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ABSTRACT

Aims. We study the modes and stability of non-isothermal coronal loop models with different intensity values of the equilibrium
magnetic field.
Methods. We use an energy principle obtained via non-equilibrium thermodynamic arguments. The principle is expressed in terms of
Hermitian operators and allow to consider together the coupled system of equations: the balance of energy equation and the equation
of motion.
Results. We determine modes characterized as long – wavelength disturbances that are present in inhomogeneous media. This char-
acter of the system introduces additional difficulties for the stability analysis because the inhomogeneous nature of the medium
determines the structure of the disturbance, which is no longer sinusoidal. Moreover, another complication is that we obtain a contin-
uous spectrum of stable modes in addition to the discrete one.
Conclusions. We obtain a unique unstable mode with a characteristic time that is comparable with the characteristic life-time observed
for loops. The feasibility of wave-based and flow-based models is examined.

Key words. standards – waves – Sun: corona

1. Introduction

1.1. Variational principles

Stability is a crucial requirement for a model to produce realis-
tic descriptions. Thus, different stability analyzed of solar struc-
tures can be found in the literature, generally restricted to special
types of perturbations and specific equilibrium models. These in-
cludes, models that consider adiabatic configuration such as the
ones analyzed via the classical criterion of Bernstein et al. (1958)
or those that presuppose static equilibrium and analyze thermal
stability. In the application of Bernstein’s criterion, the adiabatic
assumption implies that the energy balance equation is not re-
quired and thus dissipation is impossible. Also the assumption
of static models is a strong, and often unjustified, restriction for
open systems. Thus, a crucial question for any theoretical model
is whether the much more common far-from-equilibrium states
are stable, where the consideration of both thermal and mechan-
ical coupled equations must be included.

A more realistic analysis of the stability of configurations
represented by non-conservative equations was presented by
Lerche & Low (1981). They proposed a Lagrangian principle in
order to analyze quiescent prominences that can undergo ther-
mal instabilities. However the non-self-adjoint character of the
operators involved in the obtained principle makes the physical
interpretation difficult.

In this paper we apply an energy principle to analyze the
stability of solar coronal loops. The principle was obtained in
a previous paper (Paper I: Costa et al. 2004; see also Sicardi
et al. 2004; see also Sicardi et al. 1991, 1989a,b, 1985) using

a general procedure of irreversible thermodynamics – based on
firmly established thermodynamic laws – that can be understood
as an extension of Bernstein’s MHD principle to situations far
from thermodynamic equilibrium. This fact has the advantage
that many known results obtained by simpler criteria can be re-
examined by a direct comparison with our criterion, and that, as
it is obtained via a thermodynamic approach, allows a straight-
forward physical interpretation. The principle associates stabil-
ity with the sign of a quadratic form avoiding non-self-adjoint
operators. Obtaining a self-adjoint operator is a requirement for
our principle to hold. When this is accomplished the calculus is
simplified. The self-adjoint character of an operator implies that
the eigenvalues ω2 are real. Hence stability transitions always
occur when ω2 crosses zero, rather than at particular points of
the real axis where the real part of the eigenvalue is different
from zero, i.e. Re(ω) � 0, leading to an efficient formulation
to test stability. Thus, the symmetry considerations of the self-
adjoint operators, the fact that there is a diagonal form associated
with these operators, and that the Rayleigh-Ritz theorem states
the existence of a minimum eigenvalue, are important reasons to
try to maintain self-adjointness in the consideration of stability.

1.2. Solar coronal loops

The theoretical modeling and the interpretation of observations
of coronal loop systems deal, among others, with the discus-
sion whether the propagating observed disturbances in loops and
post-flare loops are waves or plasma flow.
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Dynamical features of brightening coronal loops have been
traditionally interpreted as field-aligned flow of matter generated
by asymmetries in the energy input. Most classical theoretical
models have difficulties in determining the physical conditions
that make them compatible with observations. Both static loops
and steady state models – for the two classes of temperatures
models: hot (isothermal coronas with T ≈ 106 K) and cool (grad-
ually increasing temperatures up to T ≈ 105 K) – fail to provide
a satisfactory explanation for both the emission measure distri-
bution and the Doppler shift observations (Jordan 1980; Serio
1981; Craig & McClymont 1978; Mariska 1984). Thus, this sug-
gests that in traditional model scenarios radiative losses cannot
be compensated by thermal conduction. Therefore, other heating
mechanisms must be assumed (Aschwanden et al. 1999, 2000;
Walsh & Galtier 2000). Also, theoretical time-dependent mod-
els of individual loops where the plasma evolves in response to
a cyclical process of heating and cooling of the flow have diffi-
culties in fitting observations (Klimchuk & Mariska 1988).

The assumption of propagating disturbances associated with
slow magnetoacoustic waves in high Alfvén speed media is also
a field of investigation. Several wave-based models were devel-
oped to explain observations (Nakariakov et al. 2000; Tsiklauri
& Nakariakov 2001). These authors suggest that – depending
on the relative importance of dissipation by magnetic resistiv-
ity – upwardly propagating waves (of observed periods between
5−20 min) that decay significantly in the vicinity of the loop
apex could explain the rarity of observational detection of down-
wardly propagating waves. However, upwardly propagating dis-
turbances with non-decaying or even growing amplitudes were
observed in coronal EIT plumes. Analytic models have shown
that slow magnetoacoustic waves may be trapped and nonlin-
early steepened with height, providing a possible interpretation
of this phenomenon (Ofman et al. 1999).

However, due to the intensity of the flaring, the plasma dy-
namic of flare loops is generally associated with flows rather
than with waves. In fact, systematic intensity perturbations
in post-flare loops can suggest that they are the result of
evaporation-condensation cycles caused by the efficient heat-
ing of the flaring plasma from the chromosphere. Thus, chro-
mospheric evaporation seems to be the main initial matter in-
flow source for flare loops. De Groof et al. (2004) analyzed an
off-limb half loop structure from an EIT shutterless campaign
and gave arguments to reject the slow magnetoacoustic descrip-
tion and to support the flowing/falling plasma one. Nevertheless,
these authors admit that the wave theory cannot be excluded yet.

Other authors have suggested that a combination of phenom-
ena can be at the basis of a better interpretation. Alexander et al.
(1998) examined 10 flares and concluded that plasma turbulence
could be the source of the observed intensity changes rather than
hydrodynamic flows such as chromospheric evaporation. They
pointed out that it cannot be excluded that there is a degree of
“gentle evaporation” occurring early in the event with associated
hard X-ray emission below their threshold of detection. A series
of more recent papers (Tsiklauri et al. 2004a–c) that combine
theoretical and observational analysis showed that oscillations
in white, radio and X-ray light curves observed during solar and
stellar flares may be produced by slow standing magnetoacous-
tic modes of the loops. They found that a transient heat depo-
sition at the loop bottom – or at the apex – leads to a posterior
up-flow evaporation of material of the order of a few hundreds
of km s−1. During the peak of the flare, the simulations showed
that a combined action of heat input and conductive and radiate
losses could yield an oscillatory pattern with typical amplitudes
of up to a few tens of km s−1. Then, a cooling phase of plasma

draining with velocities of the order of hundreds of km s−1 oc-
curs. The numerical quasi-periodic oscillations in all the phys-
ical quantities, that resemble observational features, were inter-
preted as being produced by standing sound waves caused by
impulsive and localized heating.

In previous papers (Borgazzi & Costa 2004; Costa &
Stenborg 2004) one of us developed a diagnostic observational
method to describe loop intensity variations, both in space and
time, along coarse-grain loop structures. We find that none of
the arguments leading to the determination of whether waves or
flow models can better fit observations was conclusive. Some
of our results suggested wave-based model interpretations i.e.
the periodic behaviour of the disturbances observed, the almost
constant speed of some brightening features and the fact that the
estimated speeds were not higher that the sound speed in the
coronal loops. However, as we mentioned, the period behaviour
can also be attributed to flows (Gómez et al. 1990; De Groof
et al. 2004). Also, even when the calculated speeds were not
greater than the sound ones, some of the velocity patterns were
far from being constant and their values were comparable to the
free-fall case.

Another open question is the relation between the loop’s
coronal dynamics and the physical conditions on the chromo-
spheric bases. Borgazzi & Costa (2004) found a longitude of
chromospheric coherence that characterizes the behaviour of a
whole loop-system of evolving coronal-isolated filaments. This
description is in accordance with limit-cycle models that require
that the triggering mechanism of the dynamics is located at the
bottom of the structure giving rise to the observed similar coro-
nal conditions of the isolated filaments. Another aspect that de-
serves attention is whether it is physically possible that the peri-
odicity observed could be related to, or could be the consequence
of propagating magnetoacoustic modes from the chromosphere
that have suffered distortion due to the dispersing media.

Other point that is under debate is the thermal structure of
the loops. Loop observations with TRACE (Transition Region
and Coronal Explorer, Handy et al. 1999) suggest that hot coro-
nal loops are isothermal and more dense than the predictions
of static loop models. However this scenario is not conclusive
and other interpretations are possible. Reale & Peres (2000)
showed that bundles of thin strands, each one behaving as a
static loop, with its characteristic thermal structure, convoluted
with the TRACE temperature response could appear as a single
almost isothermal loop. A wide range of configurations can be
proposed to fit observations. The fact that images form a com-
pound of complex integrated time-varying data that are not easy
to resolve is at the basis of this difficulty. The loops under analy-
sis are surrounded by other structures that usually intersect them
along the line of sight and the change of the brightening of the
loops is also affected by background emission. Thus, efforts are
made to produce observational and theoretical results of coronal
loop dynamics.

The aim of this paper is to investigate whether the propagat-
ing observed disturbances in loops are waves or plasma flow and
their thermal structure. Non-isothermal loops are traditional can-
didates for Hopf instabilities with cycles of flow evaporating and
condensing, thus the analysis of frequencies and mode structures
can provide insight into a possible wave model interpretation of
these types of configurations. We consider the stability analysis
as the leading criterion to select possible theoretical wave mod-
els. The fact that a number of non-linear equilibria are possible
due to the open character of the systems makes it necessary to
consider both thermal and mechanical stability in a coupled way.
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2. The stability criterion

The thermodynamics of irreversible processes is described in
terms of phenomenological relations between conjugate pairs
of thermodynamic variables: the flows and the forces that cause
them. The linear thermodynamic approximation treats small de-
viations from the equilibrium state by including fluctuations in
the neighborhood of this state. It describes the behaviour of the
system around the equilibrium state or around a non-equilibrium
stationary one that is linearly close to it.

If the system is isolated, as is stated by the second law of
thermodynamics, the entropy grows exponentially up to its max-
imum value. That the system is in an open-near-equilibrium state
means that energy and matter is exchanged with the neighbors
and the entropy of the system is not necessarily positive. Even
when the entropy produced in the system’s interior, due to ir-
reversible processes, is never negative, a negative flow of en-
tropy produced by the exchange of matter and energy can make
the system remain indefinitely in a near-equilibrium state. These
states are known as stationary states and a coherent dynamic of
the system could last if sufficient negative entropy flow is pro-
vided to it. Thus, the criterion that states the stability of this sta-
tionary state gives insight into the dynamic structures that can
be found in nature. These stationary states are also known as
detailed balanced. As Onsager pointed out (1931), the balance
consists of the compensation between the fluctuations and dissi-
pation produced by the flows and forces that have a microscopic
reversible character near the thermodynamic equilibrium. The
empirical relations between flows and forces are linear and re-
lated by the so-called resistance matrix R that is symmetric and
positive definite. Its symmetric character is guaranteed by the
principle of microscopic reversibility and its positive definite-
ness by the proximity of the reference state to the thermody-
namic equilibrium, where the entropy has a maximum.

However, there is no continuity between linear and nonlin-
ear thermodynamical processes. When the system is beyond the
immediate neighborhood of the stationary state the nonlineari-
ties become visible. Instabilities that cause dynamic transitions
in open systems are responsible for the qualitative difference
between linear and nonlinear thermodynamics. Therefore, dy-
namic cooperative phenomena can only arise in nonlinear ther-
modynamics. Thus, nonlinear thermodynamics is related to the
stability properties of non-equilibrium stationary states, where
the linear relation between flows and forces can become state
dependent (i.e. R is not necessarily a symmetric positive definite
matrix), and the problem of having a thermodynamic theory to
provide a general criterion for the stability of the system – which
is not evident through the integration of the variational equations
– becomes a fundamental point. Non-linear thermodynamics is
the extension of the linear theory to situations far from thermo-
dynamic equilibrium where the relaxation of the processes to a
steady state of non-equilibrium (nonlinear state) is not assured
and requires a stability analysis (Glansdorff & Prigogine 1971;
Keizer 1976; Graham 1978; Lavenda 1993, 1987).

In Paper I we showed how to obtain the variational principle
from the equations that describe the dynamics of the system of
interest. The method consists of obtaining a Lyapunov function,
also known as generalized potential, that represents the mathe-
matical expression of the stability conditions. This function is
determined by the analysis of the thermodynamic properties of
the system linearized around a non-linear stationary state also
called non-linear equilibrium state. The equations governing the
dynamics are written as a system of two coupled equations:
the balance energy equation and the equation of motion. Thus,

the perturbation analysis around a stationary state is performed
considering a variable state vector of four independent compo-
nents: the three space component displacement and the tempera-
ture variation. Once the linearization is done, the Lyapunov func-
tion can be immediately obtained by inspection of the resulting
expression written in a compact matrix form. Each of the matri-
ces of the compact expression are linear operators (that could in-
clude spatial derivatives) and have a clear physical interpretation
that is given by its role in the equation. The matrix that multi-
plies the second time derivative of the perturbation is associated
with the inertia of the system, the one that multiplies the first
time derivative of the perturbation is associated with dissipation
and the one that multiplies the perturbation itself is associated
with potential forces over the system. The principle is subject to
physically reasonable requirements of hermiticity and antiher-
miticity over the matrices. For a more detailed presentation see
Paper I and the references presented there.

2.1. The magnetohydrodynamic expression

The specific model we analyze is taken to be composed of a mag-
netohydrodynamic ideal plasma (i.e. with infinite electrical con-
ductivity σ� 1). The fundamental ideal magnetohydrodynamic
equations to be considered are as follows. The mass conservation
equation,

∂ρ

∂t
+ ∇ · (ρu) = 0 (1)

where ρ is the density of the plasma, u is the plasma velocity,
and t the time. The perfect gas law or state equation,

p =
kB

m
ρT (2)

kB is the Boltzmann constant, p the pressure, T the temperature
and m ≡ mp the proton mass. For a fully ionized H plasma ρ =
µnemp; the solar coronal abundances (H:He = 10:1) correspond
to a molecular weight µ = 1.27; ne is the number density of
electron particles (Aschwanden 2004). The induction equation,

∂B
∂t
= ∇ × (u × B) (3)

B is the magnetic field vector. The magnetic diffusivity was dis-
carded. The equation of motion for the problem is:

ρ
Du
Dt
= −∇(p) +

1
4πµ

(∇ × B) × B − ρ∇φ (4)

where g = −∇φ is the gravity expression and j = 1/4π∇× B the
current density. The energy balance equation takes the form:

ργ

(γ − 1)
D
Dt

(
p
ργ

)
= −L (5)

where γ is the ratio of specific heats and L is the energy loss
function:

L = −∇ · Fc − Lr + H. (6)

Fc is the heat flux due to particle conduction along the loop,
Lr is the net radiation flux. Neither the dominant heating mech-
anism of coronal loops nor the spatial distribution function of
the energy input is known. So, the heating function is the least
known term in the energy balance equation. Thus, the usual situ-
ation is to try reasonable arbitrary mathematical functions which
must fit the constraint imposed by the equilibrium conditions.
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As our model considers inhomogeneous temperature gradients
and isothermality is usually associated with footpoint heated
loops more than with uniformly heated ones we discard the
first case and tried the general expression H = hρ + H0. A
time varying dependence of H was not considered for simplic-
ity. However, it could be a requirement for modeling special
events such as micro-flares or while considering magnetic re-
connection phenomena. Equation (5) expresses the fact that the
gain in particle energy (internal plus kinetic) is due to heat-
ing sources, heat flow and radiation losses; ohmic dissipation
j2/σ and all other heating sources were considered as vanishing
terms implying that the optically thin assumption holds. Then
Lr = nenHQ(T ); the temperature variation (Q(T ) = χTα) was
taken from Priest (1982). Also Fc = −k∇T and, as conduction
across the magnetic field has been discarded, for a total ionized
plasma Fc = −k0T

5
2∇‖T . Finally Eq. (5) can be written as

ργ

γ − 1

D( p
ργ

)

Dt
= ∇ · (k0T

5
2∇‖T ) − ρ

2

m2
χTα +

υ

m2
ρ + H0 (7)

where υ is a constant value to be determined from the equilib-
rium conditions.

The linearization procedure is performed by replacing ρ =
ρ0 + ρ1, T = T0 + T1, B = B0 + B1 and u = u0 + ∂ξ/∂t in
the last equations, and assuming hydrostatic conditions for the
equation of motion. Thus, u0 = 0 and u1 = ∂ξ/∂t where ξ is the
perturbation around the equilibrium of the equation of motion
(the stationary state), also ∂ρ0/∂t = 0 and ∂B0/∂t = 0. Using
the relation ∂/∂t � iω in Eqs. (1) and (3), the corresponding
linearized equations (Eqs. (8)−(12)) are:

ρ1 + ∇ · (ρ0ξ) = 0 (8)

p1 =
kB

m
(ρ0T1 − T0∇ · (ρ0ξ)) (9)

B1 = −∇ × (B0 × ξ) (10)

ρ0ξ̈ =
kB

m
∇(T0∇ · (ρ0ξ) − ρ0T1)

− 1
4µ

[(∇ × Q) × B0 + (∇ × B0) × Q] + �φ∇ · (ρ0ξ) (11)

or equivalently ρ0ξ̈ − Fξ + kB
m ∇(ρ0T1) = 0 and

kB

m(γ − 1)
[ρ0Ṫ1 − (γ − 1)T0∇ · (ρ0ξ̇)] − AT1 + Bξ = 0 (12)

being

A = −
⎡⎢⎢⎢⎢⎣c∇ ·

(
T

5
2

0 ∇‖(�) +
5
2

T
3
2

0 ∇‖(T0)

)
− ρ

2
0

m2
χαTα−1

0

⎤⎥⎥⎥⎥⎦
and

B =

{
kB

m
β∇•(ρ0 ;�)

}
; β =

−2(ρ0χTα0 − υ/2)

kBm

c =
1.8 × 10−10

lnΛ
W m−1 K−1, Q = B0 × ξ.

The term ∇ · (ρ0ξ̇) was discarded because it represents the total
net flux of material through the magnetic tube. The two obtained

equations are expressed in terms of the displacement and tem-
perature perturbed variables ξ and T1. � represents the location
of the perturbed variables when performing the matrix product.

Following Paper I the resulting energy principle is:

δ2S =
1
2

∫ [
ξ̇∗βρ0ξ̇d3x

+

∫
(ξ∗βFξ + T ∗1 AT1 + T ∗1 Bξ − ξ∗BT1)

]
d3x ≥ 0 (13)

where F is the known Bernstein operator for the system.
For the non-dissipative cases, last expression reduces to the

well-known Bernstein MHD energy principle

δ2S =
1
2

∫ [
ξ̇∗βρ0ξ̇d

3x +
∫
ξ∗βFξ

]
d3x ≥ 0 (14)

from where the eigenmodes and eigenfrequencies are calcu-
lated as

ω2 = −
∫
ξ∗βFξd3x∫
ξ∗βρ0ξd3x

(15)

and the stability criterion is obtained by requiring the positivity
of the potential energy of the perturbation (Galindo Trejo 1987)

δ2Wp(Bernstein) =
1
2

∫
ξ∗βFξd3x (16)

subject to the normalization condition that the total kinetic en-
ergy is equal to one. Thus, the dissipative principle and the new
frequencies are respectively:

δ2Wp =
1
2

∫
(ξ∗βFξ + T ∗1 AT1 + T ∗1 Bξ − ξ∗BT1)d3x ≥ 0, (17)

ω2 = −
∫

(ξ∗βFξ + T ∗1 AT1 + T ∗1 Bξ − ξ∗BT ∗1)d3x∫
(ξ∗βρ0ξ)d3x

(18)

with the same normalization condition.

3. Application to the stability of a coronal
inhomogeneous loop model

We are interested in analyzing the stability of non-homogeneous
loops. This is, loops with inhomogeneous distributions of plasma
density and temperatures. This character of the system poses ad-
ditional difficulties for the stability analysis because the inho-
mogeneous nature of the medium determines the structure of the
disturbance which is no longer sinusoidal, making the traditional
normal mode analysis useless for this treatment. Moreover, there
may exist a continuous spectrum of stable modes besides the dis-
crete one. As a first order approximation we neglect the effect of
gravitational stratification and thus confine the analysis to char-
acteristic spatial scales lower than the pressure scale height in
the solar corona. In order to analyze the stability and to obtain
the frequencies and modes the physical quantities in Eqs. (17)
and (18) must be calculated along the loop structure.

3.1. Mechanical equilibrium

In order to determine an equilibrium configuration we assume
force-free equations due to the fact that in plasma with low β
(gas pressure over the magnetic pressure) the pressure gradient
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Fig. 1. Schematic figure of the magnetic arcade with z(x) = zt +
2L
π

ln
[
cos(π x

2L )
]
, x and z the Cartesian coordinates. et and en the tan-

gential and normal versors respectively. Tb and Tt are the temperature
values at the bottom and top respectively. The same notation is used for
the density ρ.

can be neglected in comparison to the Lorentz force. The coronal
arcade is obtained from the equations

∇ × B0 = αB0 = 0 (19)

j × B0 = 0. (20)

Also, B0 · ∇p = 0 and thus the pressure has a constant value
along the loop. We assume that the unperturbed magnetic field
is B0 = (B0,x(x, z), 0, B0,z(x, z)) and obtain the equilibrium field
components

B0x = −B00 cos
(
π

2L
x
)

e−
π

2L z (21)

B0z = B00 sin
( π
2L

x
)

e−
π

2L z (22)

with

B0 = B00e−
π

2L zes. (23)

The relation

z = zt +
2L
π

ln
[
cos

(
π

x
2L

)]
(24)

is straightforward. The arc element s (see Fig. 1) can be ex-
pressed as

ds = dx

√(
1 +

dz
dx

)2

= dx � (25)

with ∆ =
√

1 + (z′)2.

3.2. Thermal equilibrium

The thermal equilibrium is obtained from Eq. (7) with L = 0
(in Eq. (6)). Thus expressions Fc = −k0T

5
2∇‖T satisfies the two

relations

∂Fc

∂T
∂T
∂s
=
−Fc

k0T
5
2

∂Fc

∂T
= − ρ

2

m2
Q(T ) + H, (26)

from where we obtain the two equations

Fc =
−dTk0T

5
2

ds
Fc

2

2
=

∫
T0

T

k0T ′
5
2

[
ρ2

m2
Q(T ′) − H0

]
dT ′ (27)

where we assume Fc(s = 0) = 0 as dT/ds = 0 at s = 0 and
H = H0, so the constant value of Eq. (7) is υ = 0. We then can re-
place Fc in Eqs. (27) and give Q(T ) its explicit expression. Then
integrating between Tt and Tb (the temperatures at the top and
the bottom of the loop respectively) and using (dT/ds)T=Tb = 0
and Tt � Tb we obtain the constant value of the heating function
H0 = 7p2χTα−2

t /
(
8k2

B

(
α + 3

2

))
. Also, we find

[
dT
ds

]2

=
p2χ

2k2
Bk0(α + 3

2 )
Tα−

7
2

⎡⎢⎢⎢⎢⎢⎣1 −
(

T
Tt

)2−α⎤⎥⎥⎥⎥⎥⎦ (28)

which is equivalent to the calculus in Chap. 6 of Priest (1982).
Our aim is to obtain T as a function of the line element s. From
Eq. (28) s = f (T ) given as an integral expression of the tem-
perature, which has to be inverted. Thus, for calculus purposes,
we define v = 1 − (T/Tt)2−α and replace T as a function of v in
Eq. (28). Then we obtain s = f (v) as

s =
1
ABv

(
1
2
, q

)
(29)

where

Bv

(
1
2
, q

)
=

∫ v

0
tp−1(1 − t)q−1dt

(Arfken & Weber 1995) with

p =
1
2
, q =

(
α

2
+

3
4

)
(2 − α) + 1,

A = (2 − α)T
α
2 − 11

4
t

(
(p2χ)/

(
2k0

(
α +

3
2

)
k2

B

)) 1
2

.

Then, T = f −1(s) as

dT
ds
= A

[
dBv
dv

dv
dT

]−1

· (30)

3.3. The perturbation

In order to calculate the stability and structure modes the general
perturbation expression along the equilibrium loop is written

ξ = [ζ(x)et + η(x)en + ξy(x)ey]eiky (31)

and

T1 = T1(x)eiky. (32)

Then, representing the equilibrium functions of the different
quantities with a 0 sub-index and using the loop parame-
ters and the mathematical relations presented in the Appendix,
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we obtain the non-dimensional expression for the energy princi-
ple (Eq. (17))

δ2Wp =
1
2

∫ 1

−1
dx

{[
β

dT0

dx
f

((
dρ0

dx

)
f + ρ0Dx f − kρ0ξy

)

+βT0 f

(
d2ρ0

dx2
f + ρ0Dxx f − k

dρ0

dx
ξy − kρ0

dξy
dx

)

−kβT0ξy

(
dρ0

dx
f − kρ0ξy

) ⎤⎥⎥⎥⎥⎥⎦
+C1

[
β

d
dx

(
z′

�B0

) (
kB0ξy

�
(−z′

� ζ +
η

�
)

+

(
k

z′

�B0ξy − dB0

dx
η − B0

dη
dx

) (
ζ

� + η
z
�
)

) − β
⎛⎜⎜⎜⎜⎜⎝
(
k

B0

�
)2

ξ2y

+

(
d

dx

(
B0

�
)
ξy +

B0

�
dξy
dx

)2

+ (
dB0

dx
η + B0

dη
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where the non-dimensional quantity δ2Wp/
(
χTα+1

t ρ2
t L/m2

)
replaces δ2Wp, and C1 = B2

00kBTtρt/mµ and C2 =

c m2T
7
2

t /(L
2Ttαρ

2
t ) were used. From this variational principle we

can then analyze stability and obtain the mode structure and the
associated frequencies for the general mode given by Eq. (31).

4. Results and discussion

In order to calculate modes and frequencies we followed the
schematic procedure described in Paper I and in Galindo Trejo
(1987). We used a symbolic manipulation program to integrate
the equations. δ2Wp and the perturbations were expanded in a
three dimensional-Fourier basis that adjusts to border condi-
tions. Thus, a quadratic form for δ2Wp was obtained and was
minimized with the Ritz variational procedure. A matrix dis-
crete eigenvalue problem subject to a normalization constraint
was obtained. The procedure is equivalent to solving Eq. (18)
of our modified principle. Once the modes are obtained, the sta-
bility condition of Eq. (17) for the generalized potential energy:
δ2Wp ≥ 0 must be corroborated. The following values were used
for the numerical calculation of the modes

α = −1
2
→ q =

6
5

s =
1
ABv

(
1
2
,

6
5

)
→ A = 5

2
T 3

t

⎛⎜⎜⎜⎜⎝ p2χ

2k0k2
B

⎞⎟⎟⎟⎟⎠
1
2

·

Coronal loop parameters: L = 1010 cm (or L = 100 Mm), Tb =
104 K Tt = 106 K ne = 108 cm−3 electron number density pt =
2kBTt; ρt = mpt/kBTt.

Table 1. Periods associated with the unstable and stable eigenvalues
(minutes) for B00 = 11 G.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

36. i 6.6 i 4.3 i 3.4 3.1 1.8 1.4 1.3 1.0 0.0 0.0 0.0

Table 2. Periods associated with the unstable and stable eigenvalues
(minutes) for B00 = 100 G.

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

36.3 i 0.7 i 0.5 i 0.36 0.33 0.2 0.15 0.14 0.1 0.0 0.0 0.0

Our main concern was to know whether the magnetic config-
uration of equilibrium could be stable under linear perturbations.
For non homogeneous configurations it is well known that the
stable eigenvalues can have continuous spectra while the unsta-
ble ones have a discrete spectrum (see Freidberg 1982; or Priest
1982). If the resulting mode components have a characteristic
wavelength of the order of the equilibrium structure, the non-
homogeneous character of modes could determine, for the stable
modes, a continuous spectrum. Thus, in this case, the traditional
normal mode analysis gives only a rough description because
one of the consequence of the existence of the continuum is that
an accumulation of discrete eigenvalues can take place at either
boundary, generally at ω2 = 0 or ω2 = ∞, indicating the pres-
ence of a continuum stable spectrum. Note that as the basis used
is discrete, the spectrum is necessarily discrete. However, the ad-
ditional evaluation of the generalized potential energy provides
the correct unstable modes and gives an approximate value of the
most probable stable period when the smaller ω2 is not located
at the boundaries.

We used different values for k: k = 0, k = 0.5 and k = 10
(k is the wavenumber associated with the perturbation compo-
nent transverse to the plane that contains the magnetic configura-
tion). We also calculated the frequencies and modes for two dif-
ferent values of the magnetic field: B00 = 11 G and B00 = 100 G.

Tables 1 and 2 show the eigenvalues (periods) associated
with the different modes for the cases B00 = 11 G and B00 =
100 G respectively, considering k = 0 and obtained by solv-
ing Eq. (18). We obtained 12 eigenfrequencies and 12 eigen-
modes for each of the magnetic field values i.e. we used a three-
component expansion and a four-component perturbation vector.
We evaluated the mode behaviour for k � 0. For each mode cor-
responding to a complex eigenvalue, the perturbation ξy was at
least two orders of magnitude smaller that the parallel ζ com-
ponent and the normal η components. For the modes with real
eigenvalue, in only one case was ξy comparable to the smaller
of the two other spatial perturbations. Thus, for numerical sim-
plicity, we used k = 0 and we discarded three zero eigenvalues
associated with this choice of k. We then analyzed only the 9 rel-
evant modes. This means that a two-dimensional analysis of the
dynamics of the problem is reasonably able to obtain the overall
behaviour within the approximations we are considering. Thus,
we decided to investigate the unstable modes and to consider the
most stable one as a reference value for stability. The most stable
mode is the one that has a real ω value and minimizes δ2Wp (it
is the mode that gives the minimum positive value of the func-
tional δ2Wp) and the most unstable one is the mode that has a
complex ω value with the minimum value of τ � 1/|ω| (τ the
instability time).

From the analysis of the table data we can conclude: 1) for
each of the two investigated magnetic values we have three com-
plex values of ω and six real ones; 2) in the two magnetic field
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Fig. 2. Mode components corresponding to the first mode P1 = 36.3 min for the cases: a) ζ and B00 = 11 G; b) η and B00 = 11 G; c) ζ
and B00 = 100 G; d) η and B00 = 100 G.

Fig. 3. Mode components corresponding to the second modes: a) ζ component of P2 = 6.6 min with B00 = 11 G; b) η component of P2 = 6.6 min
with B00 = 11 G; c) ζ component of P2 = 0.7 min with B00 = 11 G; d) η component of P2 = 0.7 min with B00 = 100 G.

cases the eigenvalues of the first mode are the same; 3) in all
the other cases the eigenvalues with B00 = 100 G are almost
an order of magnitude smaller than the corresponding values
of B00 = 11 G; 4) the series of eigenvalues is such that it could
be possible that the stable periods accumulate at ω = 0, thus the
definite stability characterization is subject to the evaluation of
the generalized potential energy of the modes.

We analyzed the structure of the modes with complex values
of ω as they are possible candidates for instability (Freidberg
1982). We noted that in the two first modes the component that is
tangent to the magnetic field | ζ | is greater than the component
| η | that is normal to it. This can be seen from Figs. 2 and 3
where ζ and η are shown for the cases: B00 = 11 G and B00 =
100 G respectively, also using k = 0. The third mode (see Fig. 4)
has comparable values of | ζ | and | η |.

The fact that for the first mode the two values of B00 give the
same time eigenvalue P1 = 2 ·60π/ω = 36.3i min indicates inde-
pendence from the magnetic structure. This is consistent with the
relative values between the two components in the two B00 cases:
| ζ |�| η | (see Fig. 2). Thus, these magnetoacoustic modes are
more of the acoustic type | ζ |�| η | than of the Alfvén type, i.e.
| ζ |�| η | (see Fig. 5). Also, the obtained period is included in a
range (10 min < P < 60 min) where MHD slow acoustic modes
are expected (Aschwanden 2004).

Figure 3 shows the second mode for B00 = 11 G and
B00 = 100 G respectively. Also for both cases the | ζ | pertur-
bation is greater than the normal perturbation | η | by an order of
magnitude.

Figure 4 show the superposition of ζ and η for the third
modes corresponding to P = 4.3 min, B00 = 11 G and P =
0.5 min, B00 = 100 G respectively. Note that in these cases,
when the component η is relevant, resembling an Alfvén wave,
the relation between the eigenvalues (periods) of the different
magnetic fields is P11 G � 10P100 G, in accordance with the re-
lation between the two values of B00(11 G) � B00(100 G)/10
and with the corresponding values of the Alfvén velocities of
the medium vA = B00/

√
µρ.

Figure 5 gives a schematic classification of fast and slow
magnetoacoustic waves from where we can analyze the be-
haviour of the modes. The first mode corresponds to θ ≈ 0 and
as its eigenvalue is independent of the magnetic field it gives

Fig. 4. ζ and η components for the third mode. a) left: P3 = 4.3 min
with B00 = 11 G and b) right: P3 = 0.5 min with B00 = 100 G. ξy has
vanishing values.

Fig. 5. Schematic classification of fast and slow magnetoacoustic
waves. θ is the angle between the mode and the magnetic field: θ = 0
corresponds to large values of ζ and θ = π/2 corresponds to large values
of η.

a slow magnetoacoustic mode. The third mode corresponds to
0 < θ < π/2 and as P3,11 G � 10P3,100 G it looks like a fast
magnetoacoustic mode (Priest 1982).

Then, in order to establish the final unstable modes we inte-
grated Eq. (17) for each of the normal modes, i.e., the integrand
is the generalized potential energy density.

Figure 6 shows the generalized potential energy density as a
function of the independent variable x for the three first modes
(see Table 1), and for the most stable one which was P4. We
show the case B00 = 11 G, the case with B00 = 100 G has the
same functional dependence. Table 3 shows the eigenvalues and
the potential energy for the modes with complex eigenvalues and
for the most stable one. Note that, even when ω has complex
values for the three first modes, as δ2Wp is positive in the second
and third case, the P1 = 36.3 min mode is the only unstable
one. The fact that, on the contrary to what happens with the first
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Fig. 6. Generalized potential energy density as a function of x for the
modes a) P1 = 36. min with δ2Wp = −16.; b) P2 = 6.6 min with
δ2Wp = 2.9; c) P3 = 4.3 min with δ2Wp = 6.63; d) P4 = 3.4 min with
δ2Wp = 2143, (B00 = 11 G for all the cases).

Table 3. Potential energy (non dimensional) of the three first modes
(complex eigenvalues) and the fourth (most stable mode) B00 = 11 G.

PotEne1 PotEne2 PotEner3 PotEne4

−16.9 2.93 663.2 2143.5

mode, the other modes with complex ω seemed to accumulate at
the origin is an indication of non-real unstable modes.

Figure 7 shows the structure of the components ζ and η for
the most stable mode P4 and for the two cases: B00 = 11 G and
B00 = 100 G. Note that | η | ≥ | ζ | and that P4,B(11 G) = 3.4 min �
10 × 0.36 min = 10 · P4,B(100 G)

The mode structure of the stable eigenvalues can
also be compared with recent results from the literature.
Magnetoacoustic oscillations of the fast kink type have been
studied theoretically (Edwin & Roberts 1983) and directly
observed in EUV wavelengths with TRACE (an updated review
of theoretical and observational results in Aschwanden 2004,

and references therein). The observations are usually modeled
by cylinders with a surface boundary representing coronal
loops. The dispersion relation is obtained matching the in-
ternal and external MHD solutions via the requirement of
continuity of pressure and perpendicular velocity. As in our
model, the observed kink-mode oscillations correspond to the
long-wavelength regime. In coronal conditions the magnetic
field is almost equal inside and outside of the loop and the kink
oscillation speed is almost the Alfvén one depending on the
ratio of external and internal density values, i.e., outside and
inside the loop. On the contrary, our model is performed by
perturbing a magnetic arcade, without considering a cylinder
with different inside and outside conditions. In eleven obser-
vational kink-mode oscillations from which the magnetic field
of the events can be inferred were obtained by Aschwanden
et al. (2002) and (2003). The comparison of our stable mode
data Pi>1 in the B00 = 11 G case is in good agreement with the
kink-mode observational results. The period range (see Table 1),
the magnetic strength (B00 = 11 G) and the wave speed (Alfvén
speed) fit the observations for similar loop densities and loop
lengths. Also, the stable modes Pi>1 with B00 = 100 G (see
Table 2) have periods that are comparable with the expected
range of fast sausage-mode periods (P ± 1−60 s) and wave
speeds of the order of the Alfvén speed (Aschwanden 2004).
However – even when a more precise comparison requires a
modeling that takes into account differences between external
and internal conditions – it is worth investigating whether these
type of modes could be associated with more intense magnetic
fields in comparison to the associated kink-mode magnetic
fields. This will be attempted in future work.

A main result regarding stability is that the characteristic
time τ = 36 min in which the instability grows is large enough to
guarantee a relative permanence of the structure before it fades
away: τ � tobs; where tobs is the typical characteristic time in
which loops seem stable (see Costa & Stenborg 2004). Thus,
even when the non-linear stationary configuration of Fig. 1 is
unstable it lasts long enough for the observations to be made.
Moreover, we confirm that the dynamic brightenings usually ob-
served could be due to magnetoacoustic waves i.e. the perturba-
tions have short periods in comparison with the time that insta-
bility occurs: P4 = 3.4 min and P4 = 0.36 min satisfy P4 � τ.

Thus, even when further calculation is needed in order to
adjust the characteristic times, it seems that wave-based models
could be able to describe the scenario of non-isothermal coro-
nal loops for sufficiently short times comparable with the char-
acteristic time in which the instability grows and the structure
fades away. A more speculative argument about the relation be-
tween wave-based models and flow-based ones is given in the
conclusions.

5. Conclusions

We investigated – via a thermodynamic energy principle – the
stability of a coronal inhomogeneous loop model in a non-linear
equilibrium state, i.e. a given thermal and magnetic equilib-
rium configuration. We also obtained the frequencies and their
associated modes. The perturbation chosen was of the general
type described by Eq. (31) which allowed the study of a more
complex mode structure with coupled thermal and mechani-
cal displacements from the equilibrium state. We used a three-
component Fourier basis expansion on the independent coordi-
nate x to characterize the unstable modes. We obtained three
complex eigenvalues and six real ones with their corresponding
eigenvectors for each of the magnetic field values B00 analyzed.
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Fig. 7. components of the most stable periods a) ζ component of P4 = 3.4 min with B00 = 11 G; b) η component of P4 = 3.4 min with B00 = 11 G;
c) ζ component of P4 = 0.36 min with B00 = 100 G; d) η component of P4 = 0.36 min with B00 = 100 G.

The other three modes were discarded. The definite stability con-
dition of the modes is given by integrating the generalized po-
tential energy density of Eq. (17), allowing the interpretation of
long-wavelength disturbances that are present in inhomogeneous
media.

1. We used different values of k (k = 0, k = 0.5 and k = 10)
to calculate the eigenvectors with complex eigenvalues and
for all cases we obtained vanishing values of ξy with re-
spect to the other perturbed quantities. When we repeated
the procedure to calculate the modes with real eigenvectors
we obtained small but not vanishing values of ξy in compari-
son with the other components. Thus, two dimensional loop
coronal models with a temperature gradient of two orders of
magnitude between the bottom and top are a good approxi-
mation to study the whole three dimensional stability.

2. We can classify the structure of the modes obtained as fol-
lows: a) those for which ζ � η and b) those for which η ≥ ζ.
In the first case the perturbation v1 = ∂ξ/∂t is almost parallel
to the magnetic field and the eigenvalue is relatively inde-
pendent of its intensity resembling the acoustic waves where
vs is independent of the magnetic field (see Fig. 5). This ba-
sic longitudinal mode describes an oscillation between par-
allel plasma kinetic energy and plasma internal energy. In
the second case v1 = ∂ξ/∂t has an important orthogonal
component and the eigenvalue varies with the magnetic field
P11 G � 10P100 G resembling the dependence of the Alfvén
waves vA � B00. When the wave is nearly transverse it de-
scribes an oscillation between perpendicular plasma kinetic
energy and the combined magnetic compressional and line
bending energies. Thus, the first case can be thought of as
slow magnetoacoustic waves and the second one as fast mag-
netoacoustic waves. The period of the slow magnetoacoustic
mode is also in accordance with observational data. Between
the fast magnetoacoustic modes and in the long wavelength
regime we distinguish two possible types, depending of the
strength of the magnetic field. For the modes with Pi>1 and
B00 = 11 G we found that the period range, the magnetic
strength and the speed of the modes resemble a fast kink-
mode. Also, through the consideration of period range val-
ues we suggest that modes with Pi>1 and B00 = 100 G could
be thought of as sausage modes. However, to go further with
the classification of mode type a modeling that takes into
consideration differences between the inside and outside of
the loop is required. Also, the non-homogeneous character
of the problem places serious limitations on conclusions in
relation to stable modes.

3. We found only one unstable mode with characteristic grow-
ing time: τu = 36 min. The approximate and most stable
mode is P4 = 3.4 min for B00 = 11 G and P4 = 0.36 min
for B00 = 100 G. The fact that there is an unstable mode
means that the equilibrium state is unstable and that wave-
based models are not adequate to fit observations. However,

Fig. 8. Thermal perturbation (T1 component) for the cases: a) P =
36 min; B00 = 11 G b) P = 36 min; B00 = 100 G.

as τu > P4 by an order of magnitude or two (depending
on the B00 value) the equilibrium appearance of the loop
and the brightening effects of the most stable mode could
be sustained by a characteristic time which is in accordance
with observational data (τu the characteristic time of the
instability).

4. A much more speculative argument, which needs further
analysis and numerical calculation of the non-linear be-
haviour of the modes, is as follows: the non-linear growth of
unstable modes influences the stable modes (they are called
slaves), the resulting behaviour is fundamentally governed
by the most unstable modes. As we obtained a unique un-
stable mode, of the type of a slow magnetoacoustic wave,
this indicates an overall unstable behaviour governed by
the tangential ζ component and the thermal one. The ther-
mal component of the unstable mode is shown in Fig. 8.
As a characteristic wavelength of the components ζ and T1
is L/2, it would be worth investigating whether this insta-
bility could be associated with a limit-cycle solution gen-
erally characterized as a flow-based model (Gómez et al.
1990; De Groof et al. 2004). If this is the case, τ should
be the growth of the instability, before it reaches its non-
linear saturated value, in a new equilibrium state of an oscil-
latory type in the ζ and T1 components. Thus, both types of
models (waves and flow) converge in explaining the instabil-
ity of a magnetic structure with long wavelength perturba-
tions of the order of the magnetic structure. Also, even when
the modes were linearly unstable, the fact that the dominant
varying components are T1 and ζ, with the last one parallel
to the magnetic field could imply that the magnetic struc-
ture (but not the equilibrium state) lasts much longer than
what is stated by τ. Moreover, this is in accordance with the
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Fig. 9. Schematic description of the unstable mode superimposed on the
magnetic structure. At a definite phase the perturbation is always posi-
tive, it grows until it reaches x = ±L/2, then decreases until it becomes
zero at Z = Zt.

Fig. 10. The curve formed by the resulting component perturbations in
the vector space of perturbations for a) B00 = 11 G and b) B00 = 100 G.

energetic description of the type of perturbation. Slow, nearly
longitudinal magnetoacoustic modes describe a basic oscil-
lation between parallel plasma kinetic energy and plasma in-
ternal energy where the magnetic energy plays no relevant
role. This could justify long lasting loop observations with
dynamic plasma inside. Figure 9 is a scheme of the unsta-
ble mode superimposed on the magnetic structure. In half
of the period the perturbation is always positive and grows
until it reaches x = ±L/2, then decreases until it becomes
zero at x = 0 and Z = Zt. The perturbation gives the tan-
gential velocity v1 = ∂ξ/∂t of the plasma particles at each
point of the magnetic configuration. Thus, in half of the pe-
riod, as described in the figure, the plasma is emerges from
the chromosphere i.e., ξ = ζen. In the other half, the per-
turbation is inverted with respect to the figure, it is always
negative, i.e. ξ = −ζen, and the plasma particles fall into the
chromosphere. A limit cycle is known to be a closed curve
(a cycle) in the vector space formed by the perturbations.

Figure 10 shows the resulting curve in the space of pertur-
bations (T1, ζ) for the two magnetic fields studied. It seems
that only for relatively large values of the magnetic field limit
cycle are possible solutions.
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6. Appendix: Mathematical tools

The following equations and relations are needed in order to ob-
tain Eq. (33)

ρt =
mp

kBTt

dρ0

dx
=

dρ0

ds
ds
dx
= �dρ0

ds
→ dT0

dx
= �dT0

ds
(34)

with � = √
1 + (z′)2. From Fig. 1 it is easy to show

et =
ex

� +
z′

� ez; en = −ex

� +
z′

� ez

et · ex =
1
� ; et · ez =

z′

� ; en · ex =
z′

� ; en · ez = − 1
�

and

et × ex = z′�ey; et × ey = en; ez × et =
ey
� ·

Then, the spatial perturbation ξ can be written in the Cartesian
system as

ξ =
[
f (ζ, η)ex + iξyey + g(ζ, η)ez

]
eiky (35)

taking into account

ξ · ex =

(
ζ(x)
� +

z′

�η(x)

)
eiky = f (ζ, η)eiky (36)

and

ξ · ez =

(
ζ(x)z′

� − 1
�η(x)

)
eiky = g(ζ, η)eiky. (37)

Then,

g(ζ, η) = η(x)(1 + z′2 − f (ζ, η)z′) (38)

and

Dx f =
d

dx

(
1
�
)
ζ(x) +

1
�

dζ(x)
dx
+

d
dx

(
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� η(x)
z′

�
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dx
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)
(39)

Dxx f =
d2

dx2
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1
�
)
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dx

1
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dζ(x)
dx
+

1
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d2

dx2
η(x)

+
d2

dx2
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z′

�
)
η(x) + 2

d
dx

(
z′

�
)
η(x)
dx
+

z′

�
d2

dx2
η(x). (40)

Finally to obtain a non-dimensional equation the following
changes were made

ρ→ ρ
ρt

; T → T
Tt

; B0 → B0

B00
; x, z→ x, z

L
·

The other non-dimensional quantities are obtained immediately
from these ones.
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