
A&A 428, 545–554 (2004)
DOI: 10.1051/0004-6361:20040325
c© ESO 2004

Astronomy
&

Astrophysics

The influence of rotation in radiation driven winds from hot stars

II. CAK topological analysis

M. Curé1 and D. F. Rial2

1 Departamento de Física y Meteorología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
e-mail: michel.cure@uv.cl

2 Departamento de Matemáticas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
e-mail: drial@dm.uba.ar

Received 24 February 2004 / Accepted 26 August 2004

Abstract. The topological analysis from Bjorkman (1995) for the standard model that describes the winds from hot stars by
Castor et al. (1975) has been extended to include the effect of stellar rotation and changes in the ionization of the wind. The
differential equation for the momentum of the wind is non-linear and transcendental for the velocity gradient. Due to this
non-linearity the number of solutions that this equation possess is not known. After a change of variables and the introduction
of a new physically meaningless independent variable, we manage to replace the non-linear momentum differential equation
by a system of differential equations where all the derivatives are explicitely given. We then use this system of equations to
study the topology of the rotating-CAK model. For the particular case when the wind is frozen in ionization (δ = 0) only one
physical solution is found, the standard CAK solution, with a X-type singular point. For the more general case (δ � 0), besides
the standard CAK singular point, we find a second singular point which is focal-type (or attractor). We find also, that the wind
does not adopt the maximal mass-loss rate but almost the minimal.
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1. Introduction

Since the launch of the first satellite with a telescope on board,
it has been established the widespread presence of stellar winds
from hot stars. These winds are driven by the transfer of mo-
mentum of the radiation field to the gas by scattering of radi-
ation in spectral lines (Lucy & Solomon 1970). The theory of
radiation driven stellar winds is the standard tool to describe
the observed properties of the winds from these stars. Castor
et al. (1975, hereafter “CAK”) obtained an analytical hydrody-
namic model for these winds, based in the Sobolev approxima-
tion. The CAK model has been improved by Friend & Abbott
(1986, “FA”) and Pauldrach et al. (1986, “PPK”), giving a gen-
eral agreement with the observations. For a extended review
see Kudritzki & Puls (2000, “KP”) and references therein.

This agreement with the observations led to the devel-
opment of a new method to determine galactic distances
using Supergiants as targets, namely the Wind Momentum
Luminosity relationship (“WML”, Kudritzki et al. 1999; KP,
and references therein).

More detailed studies from Puls et al. (1996) and Lamers
& Leitherer (1993) came to the conclusion that the line-driven
wind theory shows a systematic discrepancy with the observa-
tions. Lamers & Leitherer (1993) suggest that this discrepancy
may arise due to an inadequate treatment of multiple scattering.

Abbott & Lucy (1985), Puls (1987) and Gayley et al. (1995)
have shown that multiple scattering can provide an enhance-
ment of the wind momentum over that from single scattering
only by a factor of two – three for O stars (Abbott & Lucy 1985,
found a factor of 3.3 for the wind of ζ Pup).

Vink et al. (2000) calculate, including the multiple scatter-
ing effects, mass-loss rates for a grid of wind models that covers
a wide range of stellar parameters. They found a much better
agreement between theory and observation, concluding that the
inclusion of multiple scattering increases the confidence of the
WML relationship to derive extragalactic distances. In all the
calculations involved in the WML relationship, the solution of
the improved (or modified) CAK wind (hereafter m-CAK) is
not used. Instead an ad hoc β-field velocity profile is utilized
(see KP; Vink et al. 2000).

The unsatisfactory results of the velocity field obtained
from the m-CAK model when applied in the WML relationship
could come from the complex structure of this non-linear tran-
scendental equation for the velocity gradient and its solution
schema. Due to this non-linearity in the momentum differential
equation, there exist many solution branches in the integration
domain. A physical solution that describes the observed winds
must start at the stellar photosphere, satisfying certain bound-
ary condition and reach infinity. There is no solution branch
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that covers the whole integration domain, thus a solution must
pass through a singular point in order to match a second so-
lution branch. Therefore, the solution in this second solution
branch reaches infinity. To find the location of singular points
is one of the most difficult aspects of topological analysis of
non-linear differential equations.

Bjorkman (1995) performed a topological analysis of the
CAK differential equation. He showed that the original solu-
tion from CAK, which passes through a X-type critical point
and has a monotonically increasing velocity field, is the only
physical solution that satisfies the condition of zero pressure
at infinite radius. In this study Bjorkman did not include the
influence of the star’s rotational speed.

Although it is known that the line-force parameters (see be-
low) are not constant through in the wind (Abbott 1982), the
standard m-CAK model still uses these parameters as constant.
For the particular case of extreme low metalicities, Kudritzki
(2002) introduced a new treatment of the line-force with depth
dependent radiative force multipliers. As a test, he applied this
new treatment for the most massive and most luminous O stars
in the Galaxy and in the Magellanic Clouds (due to the lower
metalicity) finding an acceptable agreement between theory
and observations. Then, it was used to understand the influ-
ence of stellar winds on the evolution of very massive stars in
the early universe and on the interstellar medium in the early
stages of galaxy formation.

On the other hand, it is known from observations, that
all early type stars have moderate to large rotational speeds
(Hutchings et al. 1979; Abt et al. 2002) and for Oe and Be stars,
their rotational speed is a large fraction of their break-up speed
(Slettebak 1976; Chauville et al. 2001). The incorporation of
rotation in the CAK and m-CAK models has been studied by
Castor (1979), Marlborough & Zamir (1984), FA and PPK,
concluding that the effect of the centrifugal force results in a
downstream-shift of the position of the singular point, a slightly
lower terminal velocity and a slightly larger mass loss rate as
a result of an increasing in the star’s rotational speed. Maeder
(2001) studied the influence of the stellar rotation in the WML
relationship, finding just a very small effect on it.

A revision of the influence of the stellar rotation in radia-
tion driven winds has been done by Curé (2004) finding that
there exists a second singular point in these winds. He studied
the case when the stellar rotational speed is high and found nu-
merical solutions, that pass through this second singular point,
and which are denser and slower than the standard m-CAK
solution.

In view of these results, it is crucial to understand the solu-
tion topology of the standard model, forall when one wants to
incorporate other physical processes into the theory.

The purpose of this article is to study the topology of the
rotating-CAK model. In Sect. 2 we give a brief exposition of
the radiation driven winds theory and the non-linear differen-
tial equation for the momentum, including rotation, is shown.
In Sect. 3 after a coordinate transformation, we develop a gen-
eral method that allows to replace the non-linear momentum
equation in a simple and straightforward manner by a system of
ordinary differential equations, where all the derivatives are ex-
plicitely given. In Sect. 4 a general condition for the eigenvalue

of the problem is developed. This condition allows to classify
the topology of the singular point (Saddle or Focal) and con-
strains the location of it in the integration domain. Section 5 is
devoted to the application of the criteria developed in Sect. 4 for
the rotating-CAK model. In Sect. 6 we show numerical results
of this topological analysis, first for a wind frozen in ioniza-
tion (setting the δ parameter of the line-force to zero) and com-
pare our results with Bjorkman‘s (1995) for the non-rotating
CAK model and the rotating-CAK model from Marlborough
& Zamir (1984). Furthermore, Sect. 6 shows the results of the
influence of changes in the wind‘s ionization structure (δ � 0)
on the topology and discuss the rotating-CAK wind model.
Conclusion are in Sect. 7.

2. The non-linear differential equation

The standard stationary model for radiation driven stellar winds
treats an one-component isothermal radial flow, ignoring the
influence of heat conduction, viscosity and magnetic fields (see
e.g., Kudritzki et al. 1989, “KPPA”).

For a star with mass M, radius R∗, effective temperature T
and luminosity L, the momentum equation with the inclusion
of the centrifugal force due to star’s rotation, reads:

v
dv
dr
= −1
ρ

d℘
dr
− GM(1 − Γ)

r2
+
v2φ(r)

r
+ gline(ρ, v′, nE) (1)

where v is the fluid velocity, v′ = dv/dr is the velocity gradient,
ρ is the mass density, Ṁ is the star’s mass loss rate, ℘ is the
fluid pressure, vφ = vrot R∗/r, where vrot is the star’s rotational
speed at the equator, Γ represents the ratio of the radiative ac-
celeration due to the continuous flux mean opacity, σe, relative
to the gravitational acceleration, i.e., Γ = σeL/4πcGM and the
last term gline represents the acceleration due to the lines.

The standard parameterization of the line-force (Abbott
1982) reads:

gline =
C
r2

fD(r, v, v′)
(
r2v v′

)α
(nE/W(r))δ (2)

W(r) is the dilution factor and fD(r, v, v′) is the finite disk cor-
rection factor. The line force parameters are: α, δ and k (the
last has been incorporated in the constant C), typical values of
these parameter from LTE and non-LTE calculations are sum-
marized in Lamers & Cassinelli (1999, Chap. 8, “LC”). We
have not used the absolute value of the velocity gradient in the
line-force term, because we are interested in monotonic veloc-
ity laws.

The constant C represents the eigenvalue of the problem
(see below) and is given by:

C = ΓGMk

(
4π

σEvthṀ

)α
, (3)

where vth = (2kbolT/mH)1/2 is the hydrogen thermal speed, nE

is the electron number density in units of 10−11 cm−3 (Abbott
1982), while the meaning of all other quantities is standard
(see, e.g., LC).

Together with the momentum Eq. (1), the continuity
equation reads:

4πr2ρ v = Ṁ. (4)
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Introducing the following change of variables:

u = −R∗/r, (5)

w = v/a, (6)

w′ = dw/du, (7)

where a is the isothermal sound speed, i.e., ℘ = a2ρ. Replacing
the density ρ from Eq. (4), the m-CAK momentum Eq. (1) with
the line force (2), we obtain:

F(u, w, w′) ≡
(
1 − 1
w2

)
w w′ +

2
u
+ A

(
1 + Ω2 u

)

− C fD g(u)(w)−δ
(
w w′

)α
= 0 (8)

here the constants A, C and Ω are:

A =
GM(1 − Γ)

a2R∗
=
v2esc

2a2
=
v2break-up

a2
, (9)

C = C

(
ṀD
2π

10−11

aR2∗

)δ (
a2R∗

)(α−1)
, (10)

Ω =
vrot

vbreak-up
=

arot√
A
, (11)

where arot is defined by:

arot =
vrot

a
, (12)

here vesc is the escape velocity and vbreak-up is the “break-up”
velocity. The function g(u) is defined as:

g(u) =
(
1 +
√

1 − u2
)δ
, (13)

and the constant D is:

D =
1

mH

(1 + ZHeYHe)
(1 + AHeYHe)

, (14)

YHe is the helium abundance relative to the hydrogen, ZHe is the
amount of free electrons provided by helium, AHe is the atomic
mass number of helium and mH is the mass of the proton.

The standard solution, from this non-linear differential
Eq. (8), starts at the stellar surface and after crossing the
singular point reaches infinity. At the stellar surface the dif-
ferential equation must satisfy a boundary condition, namely
the monochromatic optical depth integral (see Kudritzki 2002,
Eq. (48)):

τPhot =

∫ ∞

R∗
σE ρ (r) dr =

2
3
· (15)

A numerically equivalent boundary condition is to set the
density at the stellar surface to a specific value,

ρ (R∗) = ρ∗. (16)

When the singularity condition,

∂

∂w′
F(u, w, w′) = Fw′ = 0 (17)

is satisfied, its location (u = uc) corresponds to a singular (or
critical) point, and in order to get a physical solution, the regu-
larity condition must be imposed, namely:

d
du

F(u, w, w′) =
∂F
∂u
+
∂F
∂w
w′ = Fu + Fw w

′ = 0, (18)

hereafter, all partial derivatives are written in a shorthand form,
i.e. Fu = ∂F/∂u.

In order to satisfy simultaneously Eqs. (8), (17), (18)
and (15) or (16), the value of the constant C is not arbitrary,
i.e., the constant C is the eigenvalue of this non-linear
problem.

3. Coordinate transformation and system
of equations

In this section we will apply another coordinate transformation
and introduce a new independent variable, τ, without physical
meaning. This will allow us to transform the non-linear differ-
ential equation for the momentum (8) into a system of coupled
differential equations, which is numerically integrable.

Defining

y =
1
2
w2, (19)

and

p = w w′ =
dy
du
, (20)

the momentum Eq. (8) can be written in a general form as:

F(u, y, p) = 0. (21)

Differentiating this function and using dy = p du, we obtain:

dF =
(
Fu + p Fy

)
du + Fp dp = 0. (22)

We introduce now a new independent variable, τ, defined
implicitely by:

du = Fp dτ. (23)

Because u and τ are independent variables, they have to be re-
lated between them. While Fp � 0, we can write τ as function
of u as:

dy
du
=

dy
dτ

(
du
dτ

)−1

= p. (24)

We can transform from Eq. (22) to the following system of
ordinary differential equations:

du
dτ
≡ U = Fp, (25)

dy
dτ
≡ Y = p Fp, (26)

dp
dτ
≡ P = −

(
Fu + p Fy

)
. (27)

A solution of this system of differential equations is also a so-
lution of the original momentum equation, since if any initial
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condition (u0, y0, p0) satisfies F(u0, y0, p0) = 0, then a solution
of Eqs. (25)–(27) verifies that F(u(τ), y(τ), p(τ)) = 0.

An advantage of this equation system (25)–(27) over the
CAK momentum differential Eq. (8) is that all the deriva-
tives are explicitely given, therefore there is no need to use
root-finding algorithms to find the value of the velocity-
gradient. Also, standard numerical methods (e.g., Runge-
Kutta) can be used to integrate this system.

4. Linearization and eigenvalue criteria

All critical points of the system (25)–(27) satisfy simultane-
ously F = 0, U = 0 and P = 0. Thus, in order to study
the behavior of the solution in the neighborhood of a singu-
lar point we linearise this system of differential equations, us-
ing the Groebman-Hartman theorem (“GH”, see appendix; For
more details see Amann 1990), we obtain:

dU =
(
Uu + pUy

)
du + Up dp, (28)

dP =
(
Pu + pPy

)
du + Pp dp. (29)

We have not included dY because U and Y are dependent
(Y = pU, Eq. (26)). The GH theorem indicates that the eigen-
values (and the eigenvectors) of the partial derivative matrix B,
defined by:

B =

(
Uu + p Uy Up

Pu + p Py Pp

)
, (30)

provide the information concerning the topology structure of
the critical (singular) points.

On the other hand, if we consider the eigenvalue C̄ as a free
paramenter, the critical points are the solution of the following
system of equations:

F
(
u, y, p, C̄

)
= 0, (31)

U
(
u, y, p, C̄

)
= 0, (32)

P
(
u, y, p, C̄

)
= 0. (33)

In this case the number of incognits is greater than the number
of equations, then we can only solve for the incognits in terms
of one of them (implicit function theorem).

If
(
uc, yc, pc, C̄

)
satisfies the previous system and further-

more, ∆ � 0 at the singular point, we can solve for yc, pc and
C̄ and its derivatives as a function of uc. We obtain for the
gradient of C̄:

dC̄
duc
= − 1
∆

det



Fy Fp Fu

Uy Up Uu

Py Pp Pu

 , (34)

where the determinant ∆ is defined by:

∆ = det



Fy Fp FC̄

Uy Up UC̄

Py Pp PC̄

 , (35)

Considering that at the critical point: Fp = 0 and Fu = −pFy,
Eq. (34) transforms to:

dC̄
duc
= − 1
∆

det



Fy 0 −pFy
Uy Up Uu

Py Pp Pu

 =
Fy
∆

det (B) . (36)

The GH theorem establishes that the singular point topology
is determined by the sign of the eigenvalues of the matrix B.
A critical point is of X-type (Saddle) when the eigenvalues are
both real and have opposite sign, or equivalently,

det(B) < 0. (37)

Applying this to the rotating-CAK model (see next section for
details) it is verified that,

Fy
∆
> 0, (38)

then a X-type singular point corresponds to the condition:

dC̄
duc
< 0. (39)

Therefore any X-type physically relevant singular point, is re-
lated to the behavior of the eigenvalue C̄, specifically when
condition (39) holds.

5. The topology of the rotating-CAK model

The analysis we have shown in the last section (up to Eq. (37))
is valid for the general radiation driven stellar winds theory,
i.e., including the finite-disk correction factor. In the remainder
of this paper we will study the original CAK model, i.e. fD = 1.
The topological study of the m-CAK model will be the scope
of a future article.

The non-linear momentum Eq. (8) for the rotational-CAK
model (including δ), in (u, y, p) coordinates reads:

F(u, y, p) =

(
1 − 1

2y

)
p +

2
u
+ A

(
1 + Ω2u

)

−C̄ g (u) y−δ/2 pα = 0 . (40)

From this equation, after a straightforward calculation, the cor-
responding system of differential equations U and P, (Eqs. (25)
and (27), respectively) are:

U (u, y, p) = 1 − 1
2 y
− α C̄ g(u) y−δ/2 p−1+α, (41)

P (u, y, p) =
2
u2
−Ω2A − p2

2 y2
− δ

2
C̄ g (u) y−1−δ/2 p1+α

+C̄ g (u) h(u) y−δ/2 pα, (42)

where

h (u) = − δ u
(
1 − u2 +

√
1 − u2

)−1
, (43)

Fy and ∆ are:

Fy =
p

2 y2
+
δ

2
C̄ g (u) y−(1+δ/2) pα, (44)

∆ = (1 − α) g(u) y−δ/2 pα

×
[

p
2y4
+

1
4

C̄ g(u) y−(3+δ) pα−1

×
(
(4α + δ) yδ/2 + 2α δ C̄ g(u) y pα

) ]
. (45)
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Table 1. B2 V stellar parameters.

R/R� M/M� L/L� Teff/K Γ A

4.5 9.0 3553. 21 000. 9.27 × 10−3 1413.

It is easy to verify that both, Fy > 0 and ∆ > 0.
Once the location of the critical point, uc, is known, we can

solve yc, pc and C̄ from Eqs. (40)–(42), obtaining:

yc =
1
2
+

α

(1 − α)
1
qc

(
2
uc
+ A

(
1 + Ω2uc

))
, (46)

pc =
1
2

qc +
α

1 − α
(

2
uc
+ A

(
1 + Ω2uc

))
, (47)

C̄ =
yδ/2c

(1 − α) g (uc) pαc

(
2
uc
+ A

(
1 + Ω2uc

))
, (48)

where qc is the positive solution of the quadratic equation

q2 +
δ

1 − α
(

2
uc
+ A

(
1 + Ω2uc

))
q = γ (uc) , (49)

with

γ (uc) = −2AΩ2 +
4

u2
c

+
2h (uc)
1 − α

(
2
uc
+ A

(
1 + Ω2uc

))
. (50)

Equations (46)–(48) are generalizations of the Eqs. (49)–(51)
from Marlborough & Zamir (1984), including now the effect
of the line-force term (nE/W)δ.

Since the eigenvalue C̄ must be positive, we have:

2
uc
+ A

(
1 + Ω2uc

)
> 0. (51)

This last inequality imposes a restriction in the position (fur-
thest from the stellar surface in the radial coordinate r) of the
singular point, namely:

uc < umax ≡ − 4

A
(
1 +

√
1 − 8Ω2/A

) · (52)

6. Topology of the rotating CAK wind

In this section we show the results of our topological analysis.
Following Bjorkman (1995), we choose a typical B2 V star with
stellar parameters summarized in Table 1. We have adopted the
line-force multiplier parameters k and α from Abbott (1982)
and the δ parameter is from LC, these values are summarized
in Table 2.

6.1. The frozen-in ionization (δ = 0 )

The factor (nE/W)δ in the line-force takes into account the
changes in the ionization of the wind. As a first step to un-
derstand the topology of the rotating-CAK model we set δ = 0.

Table 2. Line-force parameters.

k α δ

0.212 0.56 0.02

6.1.1. The critical point interval

This case is simpler because we can obtain analytically from
Eqs. (46)–(48) the variable y as function of u and p, i.e.:

y =
p

2
(
2/u + A(1 + Ω2 u) + p − C pα

) · (53)

Bjorkman (1995) obtained the same result (see his Eq. (13))
for the non-rotational case, Ω = 0. Moreover, qc can be
expressed by:

q2
c = γ(uc) = 4u−2

c − 2AΩ2. (54)

As we mentioned in previous sections, qc must be positive. This
gives an additional restriction for the location of the singular
point (nearest to the stellar surface in the radial coordinate r).
The value of umin is defined when γ(umin) = 0 and is given by:

umin = max

{
−1,−

√
2/A
Ω

}
· (55)

Therefore, uc is restricted to the interval (umin, umax). A simi-
lar result which restricts the location of the critical point to an
interval has been found by Marlborough & Zamir (1984) see
their Eq. (65)).

Figure 1a shows the behavior of γ (Eq. (54)) versus r/R∗−1
for different values of the rotational parameter Ω. For the
non-rotational case Ω = 0, the function γ is positive for al-
most the whole integration domain, therefore the singular point
can be placed anywhere. Thus, is the lower boundary condition
which fixes the position of the singular point. For the rotational
case, the second term in the RHS of Eq. (54) is the dominant
term for almost any value of Ω. Therefore the larger is Ω the
larger is the value of rmin (≡ −1/umin) as the different curves in
Fig. 1a show.

On the other hand, the value of the term 8Ω2/A in
Eq. (52) is almost negligible and consequently the value of
rmax(≡−1/umax) is almost constant at r = AR∗/2. Table 3 shows
the interval (rmin, rmax) for different values of the parameter
Ω. It is clear from this table that from a very low value of
Ω =

√
2/A (=0.038 for our test star) the location of rmin > R∗

and the critical point, rcrit, is strongly shifted downstream in the
wind. Once rcrit (or uc) is fixed, the value of γ(rcrit) is inserted
in Eq. (54) and qc and C̄ are obtained. Figure 1b shows C̄ from
Eq. (48) against r/R∗ − 1 for the same values of Ω of Fig. 1a
(same type of lines too). The value of the derivative, dC̄/du is
always negative indicating that the critical point is an X-type.
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10�1 100 101

r�R� �1

C

b�

10�1 100 101

r�R� �1

Γ

a�

Fig. 1. a) The function γ versus r/R∗ −1 (Eq. (54)) for different values
of the rotational parameter Ω. Ω = 0, continuous-line; Ω = 0.25,
dashed-line; Ω = 0.8, dotted-line. The horizontal line is for γ = 0.
b) The eigenvalue from Eq. (48) as a function of r/R∗ − 1 for the
same values of Ω as a). Note that dC̄/du is always negative in the
interval (rmin, rmax).

Table 3. Analytical approximation and numerical results for the
rotational-CAK model with δ = 0. Note: the mass loss rate is given in
units of 10−9 M�/year and the terminal velocity is in km s−1.

Ω rmin/R∗ rmax/R∗ rcrit/R∗ C̄max C̄ Ṁ v∞

0 1 706.50 1.559 48.248 48.223 1.814 1008.2
0.2 5.316 706.46 5.370 47.972 47.961 1.831 920.1
0.4 10.632 706.34 10.669 47.648 47.634 1.854 800.3
0.6 15.948 706.14 15.992 47.322 47.303 1.877 683.3
0.8 21.264 705.86 21.334 46.992 46.964 1.902 574.5

6.1.2. Linearization of the B-matrix: Eigenvalues
and eigenvectors

The matrix of linearization B (Eq. (30)) is given by:

B |(uc ,yc,pc) =
2

u2
c pc


θ2

α(1−α)u2
cη

2(θ+αη)
2(1+2θ3)(θ+αη)

u2
c

−2θ2

 (56)

where θ and η are given by:

θ =

√
1 −Ω2 A u2

c/2, (57)

and

η = −
(
2 + A uc

(
1 + Ω2 uc

))
/ (1 − α) . (58)
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Fig. 2. The topology of the freeze in ionization rotating-CAK model
(δ = 0), p versus (r/R∗ − 1) for Ω = 0.25. The unique curve that starts
at the stellar surface and reaches infinity is the CAK original solution
(continuous-line).

The eigenvalues of the B-matrix are:

µ± =
1

u2
c pc

(
−θ2 ±

√
9θ4 + 4α (1 − α)

(
1 + 2θ3

)
η

)
. (59)

It is easy to check that the product of the eigenvalues µ+ × µ−
is negative, i.e., the topology of the singular point is saddle or
X-type as the GH theorem establishes. We can write the asso-
ciated eigenvectors as (1, ν±), where

ν± =

(
−3θ2 ± √

9θ4 + 4α (1 − α)
(
1 + 2θ3

)
η
)

(θ + αη)

α (1 − α) u2
cη

, (60)

where ν+ (ν−) corresponds to the unstable (stable) manifold.
The maximum value of C̄, that accounts for the minimum mass
loss rate, occurs when uc = umin, Eq. (48) becomes:

C̄max =
A (1−Ω2)−2

(1−α)

(√
1 − Ω2 A

2

+ α
1−α

(
A (1 −Ω2

)
− 2

)−α
, i f Ω ≤ √2/A

C̄max =
1
αα

(
A−2

√
2AΩ

1−α
)1−α

, i f Ω >
√

2/A.

(61)

6.1.3. Phase diagram

In order to obtain a numerical solution for the wind, we need an
approximation for the location of the critical point. We use the
value of uc = umin as a first guess of the critical point and use
this value of uc to calculate C̄max as our first guest for the eigen-
value C̄. Table 3 shows the values of rmin, rcrit and C̄max, C̄ con-
firming that this is a very good approximation. Now using stan-
dard numerical algorithms we integrate our system of equations
(Eqs. (25)–(27)) from the singular point up and downstream to
obtain the numerical solution.

As Bjorkman (1995) pointed out, it is insightfull to study
the solution topology in a p versus (r/R∗ −1) diagram. Figure 2
shows this phase diagram. If we start to integrate at the singu-
lar point, we cannot leave this point because all the equations,
U = 0, Y = 0 and P = 0 are simultaneously satisfied at this
point. Therefore we have to move slightly up and downstream
along the direction of the unstable manifold. After this, we
can integrate obtaining the different solutions showed in Fig. 2.
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Fig. 3. The velocity profile v(r) (in km s−1) as function of r/R∗ − 1 for
the non rotating case (continuous-line) and for the rotational cases:
Ω = 0.25 dashed-line; Ω = 0.8 dotted-line. The location of the singu-
lar points is indicated by a larger-dot.

From this figure, it is clear that the only solution that reaches
the stellar surface (τ → +∞, in the direction of −(1, ν+)) and
also reaches infinite (τ → +∞, in the direction of (1, ν+)) is
the original CAK solution (continuous-line). The results from
Table 3 for the non-rotational case are the same one obtained
by Bjorkman (1995).

Figure 3 shows the velocity profile, v (in km s−1) versus
r/R∗ − 1 for our B2 V test star. We have chosen this value
of Ω = 0.25 from the study of Abt et al. (2002), that concluded
that B-stars rotate at a 25% of their break-up speed. The val-
ues Ω = 0.8 accounts for a fast rotator, e.g., a typical Be-Star
(Chauville et al. 2001). We see from this figure that neglects the
rotational speed always overpredicts the value of the terminal
velocity.

We conclude that the rotational speed shifts the location of
the critical point downstream and reduces the terminal velocity,
but has almost no influence on the value of the eigenvalue (mass
loss rate). Furthermore, we can see from our approximate and
numerical results summarized in Table 3 that the CAK wind do
not have the maximum mass-loss rate as Feldmeier et al. (2002)
and Owocki & ud-Doula (2004) concluded for a non-rotating
CAK model with zero sound speed. Contrary to expectation,
the rotating-CAK wind critical solution corresponds to an al-
most minimum mass-loss rate (maximum eigenvalue).

6.2. The rotating CAK model (δ � 0 )

Abbott (1982) studied the indirect influence of the density in
the line-force through the dependence of the ionization bal-
ance in the electron density. He found that this dependency
modifies the force-multiplier and therefore the line-force by a
factor (nE/W)δ, where nE is the electron density (in units of
10−11 gr /cm3) and W is the dilution factor.

Although this is a weak influence, because δ ranges be-
tween 0.0 and 0.2, it is important to study how its inclusion in
the momentum equation modifies the topology of the rotating
CAK model.

As we pointed out in Sect. 5, the existence of qc > 0 im-
plies γ (uc) > 0. The behavior of γ (Eq. (50)) versus r/R∗−1 is
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Fig. 4. Same as Figs. 1a and b but for δ = 0.02. See text for discussion.

shown in Fig. 4a for the same values of Ω of Fig. 1. We can in-
terpret from this figure, that γ in (R∗, rmax) is a decreasing func-
tion in the neighborhood of r → R+∗ and an increasing function
in the neighborhood of r → rmax. Furthermore, the function γ
posses only one minimum in the integration domain located at
r ≡ rmin. The value of γ(rmin) decreases as Ω increases. For
small values of Ω, γ(rmin) > 0 and the location of the singular
point rcrit can be anywhere in the integration domain (R∗, rmax).
For larger values of Ω, γ(rmin) < 0 and γ(r) = 0 has two roots,
at r ≡ r± where r− < r+ (or u− < u+). Thus, rcrit can be
located now in two different intervals, i.e., rcrit ∈ (R∗, r−) or
rcrit ∈ (r+, rmax). For the particular case where γ(rmin) = 0, the
value of the rotational speed parameter is Ω ≡ Ωbif , where the
subscript “bif” accounts for the bifurcation in the wind solution
topology.

Figure 4b shows C̄ (Eq. (48)) against r/R∗ − 1 for different
values of Ω. When γ(r) is positive, C̄ exhibits now a different
behavior compared with the δ = 0 case. As long as Ω < Ωbif ,
dC̄/du is positive in the interval (R∗, rmin), i.e., any singu-
lar point in this interval is an attractor. Furthermore, dC̄/du
reaches its maximum, when γ is minimum, i.e., in the neigh-
borhood of r = rmin, from this point up to rmax, dC̄/du < 0 and
any singular point in (rmin, rmax) is X-type. When Ω > Ωbif , the
minimum of γ(r) is negative and the intervals are reduced to:
(R∗, r−) for the attractor type singular point and (r+, rmax) for
the X-type singular point.

The behavior of yc, pc and C̄ (Eqs. (46)–(48)) in the neigh-
borhood of r → r±, in the inverse radial coordinate u, is as
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Table 4. Numerical results for the rotation-CAK model with δ = 0.02.
Note: the mass loss rate is given in units of 10−9 M�/year and the
terminal velocity is in km s−1.

Ω rcrit/R∗ C̄ Ṁ v∞

0 4.712 50.949 1.644 929.6
0.2 7.196 50.726 1.657 879.3
0.4 11.926 50.291 1.683 779.0
0.6 17.145 49.790 1.713 669.9
0.8 22.576 49.247 1.747 564.6

Table 5. Same as Table 4 but for δ = 0.1.

Ω rcrit/R∗ C̄ Ṁ v∞

0 11.708 63.099 1.122 801.1
0.2 13.168 62.734 1.133 775.1
0.4 16.873 61.876 1.162 708.5
0.6 21.853 60.619 1.205 621.1
0.8 27.683 59.107 1.261 528.5

follows:

yc ∼ |u − u±|−1 → ∞, (62)

pc → α

1 − α
(

2
u±
+ A(1 + Ω2u±)

)
, (63)

C̄ ∼ |u − u±|−δ/2 → +∞. (64)

This divergent behavior of C̄ in the neighborhood of r±, is
shown in the curves for Ω � 0 in Fig. 4. The almost constant
value of C̄ explains why a slightly change in the eigenvalue
cause an enormous change in the location in the singular point.

Tables 4 and 5 summarise the numerical calculation for our
test star with δ = 0.02 and δ = 0.1 respectively. The data of
the Ṁ column (see also the C̄ column) show that the effect of
the rotation on Ṁ (C̄) is almost negligible. Figure 5 shows the
velocity profile for three different values of Ω (0.0; 0.25; 0.8),
panel a) for δ = 0.02 and panel b) for δ = 0.1. A large dot
shows the respective positions of the critical points. The effect
of shifting the position of the critical point is stronger for low
rotational speeds and decreases whenΩ increases as a compari-
son between Figs. 3 and 5 clearly shows. The terminal velocity,
is a decreasing function of the rotational speed and has almost
the same behavior as in the δ = 0 case. But for high rotational
speeds, the influence of δ in v∞ is negligible/small as a compar-
ison between Tables 3 and 4/5 shows.

We conclude from that the factor (nE/W)δ strongly shifts
outwards the location of the critical point and produces a bifur-
cation in the solution topology.

6.2.1. Bifurcation rotational speed

In order to have an analytical approximation for the value
of Ωbif , we can approximate for the function h(u), Eq. (43):

h(u) � −δ
2

u, (65)
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Fig. 5. The velocity profile v(r) (in km s−1) as function of r/R∗ − 1 for
the non rotating case (continuous-line) and for the rotational cases:
Ω = 0.25 dashed-line; Ω = 0.8 dotted-line.

then the minimum of γ(u) is achieved at:

ubif � −2

(
1 − α
δA

)1/3

, (66)

and the minimum value of γ(ubif) is

γ(ubif) � −2 (1 − α) Ω2 A
(
1 + 2 (1 − α)−1/3 δ1/3A−2/3

)

+3 (1 − α)1/3 δ2/3A2/3 − 2 δ. (67)

From γ(ubif) = 0, we can obtain the bifurcation value of Ω
given by

Ωbif �
√√

3 (1 − α)1/3 δ2/3A2/3 − 2 δ

2 (1 − α) A
(
1 + 2 (1 − α)−1/3 δ1/3A−2/3

) · (68)

Figure 6 show the curves rmin and r± as function of Ω. The
intersection point for all the curves (in continuous-line) is at
Ω = Ωbif . Critical points can not be located between the
curves r+ and r− (filled region). In addition, we show curves
for the location of the critical point from numerical calculations
(dashed-lines), with the lower boundary condition, τPhot = 2/3.

We can clearly see from this figure, that the position of the
critical point is shifted outwards from the stellar surface and
the greater is δ the further is the position of this critical point. It
can be inferred from this figure, that the location of the singular
point remains almost constant as long as Ω ≤ Ωbif , but from
values of Ω > Ωbif the position of rcrit grows almost linear
with Ω.

This behavior of the solution topology can be applied for
the winds of Be-Stars. At polar latitudes, i.e., slow rotational
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Fig. 6. The curves rmin and r± are shown with continuous lines as func-
tion of Ω. These curves represent the boundaries for the type of the
singular point topology. The numerical results for the location of the
singular point is also shown in dashed-line. a) is for δ = 0.02 and b)
for δ = 0.1. See text for details.

speed, the wind behaves as the standard CAK wind, but as the
latitude approaches to the equator, the rotational speed is larger
than Ωbif and the wind is slower and denser. This transition
from polar to equatorial latitudes seems to have a similar be-
havior described by Curé (2004) for the more general rotating
m-CAK wind. The study of the influence of this bifurcation in
the winds of Be stars will be the scope of a forthcoming article.

6.2.2. Phase diagram with δ � 0

Figure 7 shows the phase diagram p versus r/R∗ − 1 for
Ω = 0.25 and δ = 0.02 for our test star. The solution topol-
ogy seems to be similar to the δ = 0 case. Here the shallow and
steep curves are in continuous line and dashed line respectively.
The shallow solution is the CAK solution while the steep solu-
tion correspond to accretion flows or for radiation driven disk
winds (Feldmeier et al. 2002). As we mentioned in previous
section, we move slightly from the singular point in the unsta-
ble manifold in the directions ±(1, ν+) and then integrate out-
wards and inwards, obtaining the solution topology of Fig. 7.
Figure 8 shows both shallow and steep solutions, but here we
have started from the singular point but with different values
of the eigenvalue C̄. The almost horizontal dotted curves cor-
respond to pc from Eq. (47) and is not a continuous curve be-
cause of the bifurcation in the solution topology. The left-most
shallow curve that start at a X-type singular point do not reach
stellar surface, but is trapped by the attractor singular point.
This result implies that there is a shorter window of locations
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Fig. 7. The topology of the rotating-CAK model, p versus r/R∗ − 1
for Ω = 0.25 and δ = 0.02. The unique curve that starting at
the stellar surface and reaches infinity is the CAK original solution
(continuous-line).
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Fig. 8. The topology of the rotating-CAK model, p versus (r/R∗ − 1)
forΩ = 0.25. The different curves correspond to different values of the
eigenvalues. The left-most curve starts at the “normal” critical point
and is trapped by the attractor. See text for details.

of singular points, that fixes the eigenvalues C̄ and can reach
infinity passing through the X-type critical point. This feature
is not present when δ = 0.

7. Conclusions

In this article we have examined the topology of the
rotating-CAK wind non-linear differential equation. After the
introduction of an additional physically meaningless indepen-
dent variable (τ) we transform the momentum equation to a set
of equations where all the derivatives are explicitly given. This
formalism permitted us to linearise the equations in the neigh-
borhood of the critical points. This linearization let us to define
a condition for the derivative of the eigenvalue that defines the
topology of the critical point, i.e, X-type or attractor.

We have applied our results to the case of a point star
(CAK) for a frozen in ionization rotating wind, recovering and
generalizing the results of previous studies (Bjorkman 1995;
Marlborough & Zamir 1984). The most significant result (with
δ = 0) is that the wind does not assume the maximum mass-
loss rate but almost the minimum.

For the more general case, where changes in the wind ion-
ization are taken into account, our analysis shows the existence
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of a bifurcation in the solution topology, where two critical
points exist. The first critical point (closer to the star’s surface)
is an attractor while the second is the standard CAK critical
point. Besides the known fact that the rotational speed shifts the
location of the critical point outwards in the wind, the inclusion
of the term (nE/W)δ produces the same effect, reinforcing this
displacement.

The bifurcation topology seems to explain the results from
Curé (2004) that there exist two regions in the wind of a fast
rotating hot star, one where the wind is the one from the stan-
dard solution (fast wind) and the other with a new solution that
is slower and denser. This result shows us the necessity to per-
form a topological analysis of the rotating m-CAK wind. This
study is currently underway.
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Appendix A: Linearization in the neighborhood
of a singular point

Considering the system of differential equations given by:

ẋ = dx/dt = X (x, y) ,

ẏ = dy/dt = Y (x, y) , (A.1)

where x and y are the dependent variables and t is the indepen-
dent variable. The point (xc, yc) is singular (critical) if and only
if verifies that:

X (xc, yc) = 0

Y (xc, yc) = 0.

In order to understand the topological behavior of the solutions
close to a singular point, we expand this system using Taylor
series at (xc, yc), obtaining:

ẋ = X|(xc,yc) + Xx|(xc,yc) (x − xc) + Xy|(xc,yc) (y − yc) + o (x, y)

ẏ = Y |(xc,yc) + Yx|(xc,yc) (x − xc) + Yy|(xc,yc) (y − yc) + o (x, y) .

Neglecting superior order terms and using that (xc, yc) is a
singular point, we have, in matrix form:
(

ẋ
ẏ

)
= B

(
x − xc

y − yc

)
(A.2)

where B is the Jacobian matrix at (xc, yc), i.e.,

B =

(
Xx Xy
Yx Yy

)∣∣∣∣∣∣
(xc,yc)

. (A.3)

For a 3-dimensional system case:

ẋ = X (x, y, z) ,

ẏ = Y (x, y, z) ,

ż = Z (x, y, z) , (A.4)

with a constraint φ (x, y, z) satisfying:

φxX + φyY + φzZ = 0, (A.5)

the surface defined by:

S = {(x, y, z) : φ (x, y, z) = 0} , (A.6)

is invariant for the differential equation system evolution.
From the Eq. (A.6), we can solve for z (using the implicit

function theorem) obtaining z = z (x, y) and reduce the sys-
tem (A.4) to:

ẋ = X (x, y, z (x, y)) ,

ẏ = Y (x, y, z (x, y)) . (A.7)

If (xc, yc, zc) is a singular point of Eq. (A.7), the Jacobian
matrix B is given by:

B =

(
Xx + zxXz Xy + zyXz

Yx + zxYz Yy + zyYz

)∣∣∣∣∣∣
(xc,yc)

. (A.8)

Since zx = −φx/φz and zy = −φy/φz, we have

B =
1
φz

(
φzXx − φxXz φzXy − φyXz

φzYx − φxYz φzYy − φyYz

)∣∣∣∣∣∣
(xc,yc)

. (A.9)

For φ = F, X = U and Y = P, we obtain Eq. (30).
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