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Abstract. Using methods of non-equilibrium thermodynamics that extend and generalize the MHD energy principle of
Bernstein et al. (1958, Proc. Roy. Soc. A, 244, 17) we develop a formalism in order to analyze the stability properties of
prominence models considered as dissipative states i.e. states far form thermodynamic equilibrium. As an example, the crite-
rion is applied to the Kippenhahn-Schlüter model (hereafter K-S) considering the addition of dissipative terms in the coupled
system of equations: the balance of energy equation and the equation of motion. We show from this application, that periods
corresponding to typical oscillations of the chromosphere and photosphere (3 and 5 min respectively), that were reported as
observations of the prominence structure, can be explained as internal modes of the prominence itself. This is an alternative
explanation to the one that supposes that the source of these perturbations are the cold foot chromospheric and photospheric
basis.
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1. Introduction

1.1. Variational principles

Many stability criteria, based on energy principles, can be
found in plasma physics literature, ranging from the classical
criterion attributed to Bernstein et al. (1958) for ideal magne-
tohydrodynamics to more general and specific ones. Some as-
trophysical examples where variational principle are applied to
spread a spectrum of different problems are: the modeling of
pulsating stars (Costa et al. 2001; Ledoux & Walraven 1958),
the calculations of stellar structures (Kennedy & Bludman
1997) or the characterization of the continuous Alfvén spec-
trum of line-tied coronal loops (Halberstadt & Goedbloed
1993). In relation to the subject of interest in this paper,
many MHD prominence models – assuming both magnetohy-
drostatic and thermal equilibrium – have been proposed, e.g.
Kippenhahn & Schluter (1957); Lerche & Low (1980); Oliver
& Ballester (1996); Nagablushana (1998). However, stability
is a crucial requirement for a model in order to give a realis-
tic description of the problem. Thus, different stability analysis
considering prominence models can be found in literature gen-
erally restricted to special type of perturbations and specific
equilibrium models. A more general intent was performed by
Zweibel (1982, 1981) and also by Galindo Trejo (1989) who
used the known Bernstein’s MHD-variational principle in or-
der to analyze the stability of different known two dimensional

prominence models. They found that many of the situations de-
scribed represented unstable equilibriums.

But, as was pointed out by Lerche & Low (1981) among
all variational criteria there is an important and fundamental
difference between them related to whether they assume adia-
batical configurations or not. In the applications of Bernstein’s
criterion (Bernstein et al. 1958) the adiabaticity presupposes
the irrelevancy of the energy balance equation and thus dissipa-
tion is impossible. A more realistic case, concerning stable con-
figurations described by non-conservative equations with non-
self-adjoint operators, was presented by Lerche & Low (1981).
They proposed a Lagrangian principle in order to analyze qui-
escent prominences that can suffer thermal instabilities.

In this paper we provide a criterion in order to analyze
the stability of prominences – considering dissipative terms –
via the application of a general procedure derived recently by
us (Sicardi et al. 2004; see also Sicardi et al. 1991, 1989a,b,
1985). This procedure gives a general principle – based on
firmly established thermodynamic laws – and can be under-
stood as an extension of the Bernstein’s MHD principle to sit-
uations far from thermodynamic equilibrium. It has then the
advantage that many known results obtained by the simpler
ideal MHD criterion (Bernstein et al. 1958) (e.g. Galindo Trejo
1989, 1987) can be reexamined by a direct comparison with
this analysis, and that, as it is obtained via a thermody-
namic approach, it gives a maneuverable description of non-
thermodynamic equilibrium situations.
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1.2. Quiescent prominences

Quiescent prominences are known to be stable phenomena on
the solar atmosphere. A great amount of observational analysis
has been recently reviewed and it has become clear that an im-
provement of our understanding of filament’s and prominence’s
structure and stability, together with knowledge about their link
with the corona, can be acquire via the study of the – recently
reported – variety of oscillations in the prominence structure.

The observational evidence of prominence seismology is
reviewed in Oliver (1999): one can distinguish between the
large amplitude oscillations due to a wavefront excited during
a flare affecting the whole prominence, and small amplitude
oscillations affecting only part of the prominence. Vial (1998)
reviewed the typical periods observed in velocities which can
be separated in three categories: short periods (less than 5 min),
intermediate periods (between 6 and 20 min) and long periods
(between 40 and 90 min) as seen recently by Régnier et al.
(1999). Balthasar et al. (1999) had also established the exis-
tence of oscillations of very short period (30 s).

One of us (Blanco et al. 1999; Bocchialini et al. 2001) re-
ported observational studies that exhibit correlation with the
classification of oscillations cited above. We found that large
energy content is localized in waves with periods between one
and six minutes, which can be classified as intermediate and/or
very short periods. These periods correspond to typical oscil-
lations of the chromosphere and photosphere (3 and 5 min
respectively) suggesting a possible source for these perturba-
tions, which, outside from the prominence coronal observa-
tions, are known to be effectively stopped by the transition re-
gion (Gouttebroze et al. 2001).

Whether these range of oscillations represent intrinsic
properties of the prominence (normal modes), or if they are a
forced stable response to an external wavefront perturbation, is
a fact that must be explained by theoretical prominence models
that take into account thermal and mechanical stability con-
siderations in order to guarantee that such models can exist.
Thus, a crucial question of any theoretical model is one that
inquires about the frequency stability range. Then, as the con-
sideration of one or another model must be related to this analy-
sis, we applied thermodynamic irreversible techniques in order
to analyze both thermal and mechanical coupled stability. Our
principle is applied to the known Kippenhahn-Schluter (here-
after K-S) model. It gives an example of the physical insight
that the criterion can provide due to the advantages of the ir-
reversible thermodynamic analysis. This is, – while more re-
alistic cases require numerical treatment, a task that will be
accomplish in next steps – this analytic example shows that
the role of the different operators, that compose the equations
describing the system, can be established in terms of their sta-
bility significance. Moreover, this results in the construction of
a variational principle that associate stability with the sign of
a quadratic form avoiding non-self-adjoint operators. In fact,
obtaining a self-adjoint operator is a requirement for our prin-
ciple to hold. Nevertheless, when this is accomplished the cal-
culus result simplified due to an important mathematical prop-
erty which greatly aids in the stability analysis. The self-adjoint
character of an operator implies that the eigenvalues ω2 are

purely real. Hence stability transitions always occur when ω2

crosses zero, rather than at some particular points of the real
axis where the real part of the eigenvalue is different from zero,
i.e. Re(ω) � 0, leading to an efficient formulation for testing
stability. Thus, the symmetry considerations of the self-adjoint
operators, the fact that there is a diagonal form associated to
this operators, and that the Rayleigh-Ritz theorem states the ex-
istence of a minimum eigenvalue, are important reasons to try
to maintain self-adjointness in the consideration of stability.

2. The stability criterion

The thermodynamics of irreversible processes is described in
terms of phenomenological relations between conjugate pairs
of thermodynamic variables: the flows and the forces that cause
them. It is a subject where a large amount of work has been
done on both formal theory and applications. The first works,
treating small deviations from the equilibrium state and in-
cluding fluctuations in the neighborhood of this state, were
performed by Onsager & Machlup (1953) and by Prigogine
(1967). The criterion based on these first formulations was suc-
cessfully applied to several linear non-equilibrium problems
(Glansdorff et al. 1974; Nicolis & Prigogine 1979).

Linear thermodynamics studies the behavior of the system
around the equilibrium state or around a non-equilibrium sta-
tionary one that is linearly close to it. They are states of de-
tail balance between flows and forces and, as Onsager showed
(1931), this is due to the microscopic reversible character of
equilibrium. Thus, the empirical relations between flows and
forces are linear and the resistance matrix R that relates them
is symmetric and positive definite. It’s symmetric character is
guaranteed by the principle of microscopic reversibility and its
positive definiteness by the proximity of the reference state to
the thermodynamic equilibrium, where the entropy has a max-
imum.

But, there is no continuity between linear and nonlin-
ear thermodynamical processes. When the system is beyond
the immediate neighborhood of the stationary state the non-
linearities become visible. Instabilities that cause dynamic tran-
sitions in open systems are responsible for the qualitative differ-
ence between linear and nonlinear thermodynamics. Therefore,
dynamic cooperative phenomena can only arise in nonlinear
thermodynamics. Thus, nonlinear thermodynamics is related
to the stability properties of non-equilibrium stationary states,
where the linear relation between flows and forces can become
state dependent (i.e. R is not necessarily a symmetric positive
definite matrix), and the problem of having a thermodynamic
theory to provide a general criterion for the stability of the sys-
tem – which is not evident through the integration of the vari-
ational equations- becomes a fundamental point. The theory
was then extended to situations far from thermodynamic equi-
librium (Glansdorff & Prigogine 1971; Keizer 1976; Graham
1978; Lavenda 1993, 1987), where the relaxation of these pro-
cesses to a steady state of non-equilibrium (nonlinear state) is
described.
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2.1. General thermodynamical concepts

As it is expressed by the second law of thermodynamics, in an
isolated system the entropy S growth exponentially up to its
maximum value

dtS ≥ 0. (1)

In open systems where energy and matter with the neighbors
can be exchange Eq. (1) is not longer true. The extended for-
mulation was then proposed for all type of systems (Prigogine
1967)

dS = deS + diS , diS ≥ 0 (2)

where deS is the entropy exchange (of energy and matter) be-
tween system and neighbors and diS is the entropy produced,
due to irreversible processes, in the system’s interior.

If the system is isolated, then deS = 0 and Eq. (2) reduces
to Eq. (1). Thus, even when diS is never negative the term deS
has not a definite sign and a less than zero entropy state can be
reached as a result of the evolution (i.e. final entropy less than
its value at the thermodynamic equilibrium state). Moreover,
the system can remain indefinitely in one of these states if it
happens that dS = 0, or equivalently, that deS = −diS (note
that deS must be ≤0). These states are known as stationary
states and a coherent dynamic of the system could last if suffi-
cient negative entropy flow is provided to it. Thus, the criterion
that states the stability of this stationary state gives insight of
the dynamic structures that can be found in nature.

The stability of the stationary state is determined by the
thermodynamic properties of the system. In a linearized de-
scription of the system around the stationary state q1, q2, · · ·, qn,
(a nonlinear state) the first order of Eq. (2) is reduced to the bal-
ance of the forces of the system and its second order determines
the stability. The physical meaning of this statement is imme-
diate: in a thermodynamic system the time is a parameter as in
the Newtonian dynamics, then the positive sign of the time re-
veals the direction of the evolution. The internal production of
entropy associated to the dissipation of the system is a definite
positive second order quantity that manifests the irreversibility
of the processes. In other words, the spontaneous evolution of
the system implies diS ≥ 0 and when a perturbation not satis-
fying this condition occurs the systems returns to the reference
state. The criterion, by Onsager, that the principle of least dissi-
pation of energy must govern the probability of a succession of
non-equilibrium states towards a stationary one, results in the
requirement that every perturbation that can arise must satisfy
δ2

i S ≤ 0.
The mathematical expression of the stability condition can

be formulated in the following form: the stationary solution
for a physical system described by generalized coordinates
q1, q2, · · ·, qn, – the evolution of which is governed by a system
of known differential equations – will be stable if a function θ,
called the “Lyapunov function” – defined in a neighborhood of
the stationary point (qo

1
, qo

2
, ..., qo

n
) in the configuration space of

the system – can be found satisfying the following conditions

θ(q1 , q2 , ..., qn) ≥ 0, θ(qo
1
, qo

2
, ..., qo

n
) = 0⇔ qi = q0

i , (3)

dθ
dt
=

∑ ∂θ

∂qi
q̇i ≤ 0. (4)

The existence of this function is a sufficient condition
(Lefschetz 1977) for the stability of the stationary solution
(qo

1
, qo

2
, ..., qo

n
). To obtain a Lyapunov function is equivalent to

deriving an energy principle. Thus, if θ satisfies the relation
Eq. (4) strictly, but not Eq. (3), the system is unstable.

Then, according to Lyapunov’s theorem a sufficient condi-
tion for the stability of a steady state is that

δ2S > 0, dtδ
2S ≤ 0. (5)

If the reference state is the equilibrium or a near-equilibrium
one is simple to show that last relations (Eq. (5)) are identically
verified. In fact, as it is shown in what follows, this is an im-
mediate consequence of the second law of the thermodynamics
and of the principle of detail balance of the equilibrium, based
on Onsager’s microscopic reciprocal relations.

Taking into account that a system is completely described
by a set of N extensive thermodynamic variables xi = qi − q0

i ,
and that the tendency of the system to seek equilibrium is mea-
sured by the thermodynamic forces X = ∂

∂x S (x) (where S (x) is
the entropy of the non-equilibrium state) we find that, around
the reference state, the excess entropy (the second order en-
tropy variation δ2S ) can be written as the quadratic form

δ2S =
1
2
〈x, Sx〉 (6)

where S is the symmetric entropy matrix for near equilib-
rium states, determined by Gibbs relation. |x〉 is a vector that
stands for the thermodynamic state variables xi and 〈, 〉 rep-
resent the inner product operation in the corresponding space
vector. Then noting |X〉 as the corresponding forces

|X〉 = |Sx〉 (7)

and taking the time derivative of Eq. (6) results

dtδ
2S = 〈ẋ, X〉 (8)

where |ẋ〉 are the flows.
The known phenomenological relations between flows and

forces are expressed as

|X〉 = −R · ˙|x〉. (9)

Near equilibrium, matrix R is symmetric and positive definite
due to the principle of detail balance, then:

dtδ
2S = − < 〈ẋ, Rẋ〉 ≤ 0 (10)

and noting that the second law of the thermodynamics assures
that

δ2S =
1
2
〈x, Sx〉 > 0 (11)

it results that for any near equilibrium state, δ2S is a Lyapunov
function that assures stability. The relations of Eq. (9), without
attributing any definite symmetry property to the generalized
resistance matrix and assuming state dependence, are the ex-
tension of the linear phenomenological relations to nonlinear
processes. In next subsection we present the stability criterion
for these cases.
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2.2. The general criterion expression

The irreversible thermodynamic approach associates the
Lyapunov function θ to the generalized potentials: the free en-
ergy excess or the entropy excess of the system (Eq. (5)) (both
being second order quantities). It can be shown (Sicardi et al.
1991) that these relations admit a reformulation based on the
principle of power balance due to Lavenda (1993). In a hand-
waiving form this second order principle states that the dissi-
pation that is not compensated by the work given to the system
by the medium produces an augment of the entropy of the sys-
tem. Lavenda extended the principle of power balance to the
field of complex variables in order to decompose the fluctua-
tions in normal modes. Thus, real vectors and matrices must
be replaced by their complex equivalents, e.g. the property of
symmetry is replaced by the hermitian one.

In the following we indicate the procedure to obtain an en-
ergy principle from the basic equations that describe the system
of interest. A general mechanical and thermal description – the
equation of motion coupled with the equation of energy bal-
ance – of an open system can be written as1

ÿ = f1(y, ẏ, ε); and ε̇ = f2(y, ε) (12)

where y (a general coordinate vector) and ε (the energy) are
first order quantities linearized around a stationary state. Then
Eq. (12) can be expressed in a more compact form as

M|ẍ〉 + (RH + RA)|ẋ〉 + S|x〉 = 0 (13)

where R – the generalized resistance matrix – has been sepa-
rated into its hermitian and antihermitian parts. M, R, and S are
linear operators (which eventually may include spatial deriva-
tives) of a general vector space, and |x〉 is the resulting general-
ized vector. The hermitian part of matrix R, RH is related to the
internal dissipation of the system and is positive definite due
to the principle of least energy dissipation. RA is associated to
the non-working gyroscopic forces; e.g. Coriolis or magnetic
forces. In most cases matrix M, which is related to the iner-
tia of the system, is hermitian and positive definite. Matrix S
is generally hermitian, but, there are important physical exam-
ples where this is not the case. SH is related to conservative
or potential forces, and SA is associated to non-conservative
forces called “circulatory forces” which are not of our interest
in this paper (an example of a Lyapuunov function considering
these forces, where SA is not a vanishing matrix, is analyzed in
(Costa et al. 2001).

The principle of power balance implies that a sufficient con-
dition for the Lyapunov function to exist is that M, and S are
hermitian. Then, as we show in what follows, (Sicardi et al.
1991, 2004; Costa et al. 2001) the general stability criterion
has the form

θ = δ2S =
1
2

(〈ẋ,Mẋ〉 + 〈x, Sx〉) > 0. (14)

1 The formal procedure of these steps and the construction of the
associated variational principle is exemplified on a simple case in the
Appendix.

Note that taking the temporal derivative of Eq. (14), the stabil-
ity conditions (Eq. (5)) are also satisfied because

dθ
dt
=

1
2

(〈ẋ|Mẍ + Sx〉 + c.c.)

= −1
2

(〈ẋ|Rẋ〉 + c.c.) = −
〈
ẋ|RH ẋ

〉
≤ 0

due to the principle of least dissipation of energy.
In summary, if M = MH and S = SH, a sufficient con-

dition for stability is that relation (14) holds. Then, Eq. (14):
θ = δ2S > 0 implies

dθ
dt
= dtδ

2S = −〈ẋ, RH ẋ〉 ≤ 0. (15)

A few more words about energy principles can be added.
Energy principles are less detailed but of easier application
than normal modes methods. One of its powerful uses is to
prove instability by a trial function (providing a sufficient con-
dition for instability and a necessary condition for stability).
In general, the great number of energy principles that can be
found in literature are not necessarily derived from irreversible
thermodynamic considerations as is the case of the principle
used here. Thus, the equivalence between different criteria is
not straightforward. In fact, the requirement of the self-adjoint
character of M and S is on the basis of the stability criterion.
Thus, the comparison between a criterion obtained indepen-
dently from thermodynamic considerations with the criterion
presented here is not always possible. In fact, whether the suit-
able variational principle obtained by Lerche & Low (1981)
can be written in terms of the Lyapunov theorem is an open
question; the equivalence between a particular principle and the
principle presented here requires a specific probe. In Sicardi
et al. (2004) we probe the equivalence between our energy
principle and a principle – obtained independently of thermo-
dynamic considerations – for a dissipative plasma in the fluid
approximation (Tasso 1975). Also, in the Appendix, a similar
task, for incompressible fluids is accomplished.

3. The magnetohydrodynamic equations

In order to board the stability analysis of the prominence prob-
lem the equations governing the dynamics of the system must
be expressed in the form shown in last section. In the general
case these equations can be written as a system of two cou-
pled equations: the balance energy equation and the equation of
motion (as shown in Eq. (12)). Thus, the perturbation analysis
around a stationary state will imply considering a variable state
vector of four independent components (i.e. the three compo-
nent displacement and the temperature variation). In this sec-
tion we deduce the stability principle (Eq. (14)) for the general
prominence case. In the Appendix a simpler academic exam-
ple to illustrate the procedure avoiding mathematical compli-
cations is presented. The fundamental magnetohydrodynamic
equations to be considered are as follows. The mass conserva-
tion equation,

∂ρ

∂t
+ ∇ · (ρu) = 0 (16)
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where ρ is the density of the plasma, u is the plasma velocity,
and t the time. The perfect gas law or state equation,

p =
kB

m
ρT (17)

kB is the Boltzmann constant, p the pressure, T the temperature
and m ≡ mp the proton mass (for a fully ionized H plasma
ρ ≈ nemp, ne being the number of electron particles, n ≡ ne +
np = 2ne, np the number of protons); the induction equation,

∂B
∂t
= ∇ × (u × B) (18)

B is the magnetic field vector. The magnetic diffusivity was
discharged. The equation of motion for the problem results:

ρ
Du
Dt
= −∇(p) +

1
4π

(∇ × B) × B − ρ∇φ (19)

where g = −∇φ is the gravity expression and j = 1
4π∇ × B the

current density. The energy balance equation takes the form:

ργ

(γ − 1)
D
Dt

(
p
ργ

)
= −L (20)

where γ is the ratio of specific heats and L is the energy loss
function:

L = −∇ · q − Lr + H (21)

q is the heat flux due to particle conduction, Lr is the net radi-
ation flux. The heat source was assumed to be proportional to
the density i.e. H = hρ. Last equation expresses the fact that
the gain in particles energy (internal plus kinetic) is due to heat
flow and radiation losses; ohmic dissipation j2

σ
and all other

heating sources were considered as vanishing terms implying
that the optically thin assumption holds. Then Lr = nenH Q(T );
the temperature variation (Q(T ) = χTα) was taken from Priest
(1982). Also q = −k∇T and, as conduction across the mag-
netic field has been discharged, then, for a total ionized plasma
q = −k0T

5
2∇‖T . Finally Eq. (20) was written as

ργ

γ − 1

D
(

p
ργ

)
Dt

= ∇ ·
(
k0T

5
2∇‖T

)
− ρ

2

m2
χTα +

ι

m2
ρ. (22)

3.1. Linearization procedure

The linearization procedure is performed by replacing ρ =
ρ0 + ρ1, T = T0 + T1, B = B0 + B1 and u = u0 +

∂ξ
∂t in last equa-

tions, and assuming hydrostatic conditions for the equation of
motion. Thus, u0 = 0 and u1 =

∂ξ
∂t where ξ is the perturbation

around the equilibrium of the equation of motion (the station-
ary state), also ∂ρ0

∂t = 0 and ∂B0

∂t = 0. Using the relation ∂
∂t � iω

in Eqs. (16) and (18) the corresponding linearized equations
(Eqs. (23)−(27)) result:

ρ1 + ∇ · (ρ0ξ) = 0 (23)

p1 =
kB

m
(ρ0T1 − T0∇ · (ρ0ξ)) (24)

B1 = −∇ × (B0 × ξ) (25)

ρ0ξ̈ =
kB

m
∇(T0∇ · (ρ0ξ) − ρ0T1)

− 1
4µ

[(∇ × Q) × B0 + (∇ × B0) × Q] + �φ∇ · (ρ0ξ) (26)

kB

m(γ − 1)

[
ρ0Ṫ1 − (γ − 1)∇ · (ρ0ξ̇)T0

]
− c∇

×
[
T

5
2

0 ∇‖ +
5
2

T
3
2

0 ∇‖(T0)

]
T1 +

ρ2
0

m2
χαTα−1

0 T1

−
(

2ρ0χTα0
m2

− ι
m2

)
∇ · (ρ0ξ) = 0 (27)

where c = 1.8×10−10

lnΛ W m−1 K−1 and Q = B0 × ξ. Then,
Eqs. (23)–(25) were replaced in Eqs. (26) and (27) and the sys-
tem of equations was rewritten as (Eqs. (28) and (29)):

ρ0ξ̈ − Fξ +
kB

m
∇(ρ0T1) = 0 (28)

where F is the known Bernstein operator for the system:

kB

m(γ − 1)

[
ρ0Ṫ1 − (γ − 1)T0∇ ·

(
ρ0ξ̇

)]
− AT1 + Bξ = 0 (29)

being A = −[c∇ · (T 5
2

0 ∇‖(�) + 5
2 T

3
2

0 ∇‖(T0)) − ρ2
0

m2 χαTα−1
0 ] and

B = { kB
m β∇•(ρ0 ;�)}; β = −2(ρ0χTα0 −ι/2)

kBm . The term ∇ · (ρ0ξ̇) was
discharged because it represents the total net flux of material
through the magnetic tube. The two equations obtained are ex-
pressed in terms of the displacement and temperature perturbed
variables ξ and T1. � represent the location for the perturbed
variables when performing the matrix product. From them, we
obtain the compact matrix equation:

M|ẍ〉 + R|ẋ〉 + S|x〉 = 0 (30)

with x =

∣∣∣∣∣∣ ξT1

∣∣∣∣∣∣ , and

M =

∣∣∣∣∣∣−βρ0 0
0 0

∣∣∣∣∣∣ , R =
∣∣∣∣∣∣
0 0
0 kBρ0

m(γ−1)

∣∣∣∣∣∣ , and S =

∣∣∣∣∣∣ βF −B
B A

∣∣∣∣∣∣ . (31)

Note that in the space vector of the variables |x〉, M is positive
definite, S is an hermitian operator (because B is an antiher-
mitian one), and R is hermitian and positive definite. Taking
the inner product of the space vector |x〉 with Eq. (30), the sta-
bility criterion, the extension of the Bernstein criterion to non-
thermodynamic equilibrium states (Eq. (14)) can be written

δ2S =
1
2

[ ∫
ξ̇∗βρ0ξ̇d3x

+

∫ (
ξ∗βFξ + T ∗1 AT1 + T ∗1 Bξ − ξ∗BT1

)
d3

]
x ≥ 0. (32)

For the non-dissipative cases last expression reduces to the well
known Bernstein’s MHD energy principle

δ2S =
1
2

[∫
ξ̇∗βρ0ξ̇d3x +

∫
ξ∗βFξd3

]
x ≥ 0, (33)
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from where the eigenmodes and eigenfrequencies are calcu-
lated as

ω2 = −
∫
ξ∗βFξd3x∫
ξ∗βρ0ξd3x

(34)

and, the stability criterion is obtained by requiring the positivity
of the potential energy of the perturbation (Galindo Trejo 1987)

δ2Wp(Bernstein) =
1
2

∫
ξ∗βFξd3x (35)

subject to the normalization condition that the total kinetic en-
ergy is equal to one. Thus, the dissipative principle, the cor-
rection to Galindo Trejo’s one, and the new frequencies are re-
spectively:

δ2Wp =
1
2

∫ (
ξ∗βFξ + T ∗1 AT1 + T ∗1 Bξ − ξ∗BT1

)
d3x ≥ 0 (36)

ω2 = −
∫ (
ξ∗βFξ + T ∗1 AT1 + T ∗1 Bξ − ξ∗BT ∗1

)
d3x∫

(ξβρ0ξ)d3x
(37)

with the same normalization condition.

4. Application to the Kippenhahn-Schlüter
(K-S) model

The K-S model (Galindo Trejo 1989; Priest 1982), can be
viewed as a current sheet concentrated in the region −Lx/2 ≤
x ≤ Lx/2, 0 ≤ z ≤ Lz exposed to the magnetic field

B0 = Bz∞ tanh x ez + Bx ex, Bx = const. (38)

with x = x̃/L, L = 2h0/r, r = Bz∞/Bx, and the scale height
h0 =

kBT0

mg . T0 is the constant prominence temperature, x̃ is a
dimensional variable. For the equilibrium the following density
profile is assumed

ρ0 =
Bx

g

dBz

dx
· (39)

The fundamental constant parameters of the prominence were
taken ranging in the following intervals:

T0 =
(
7 × 103

)
K; B0 =

(
5 × 10−4

)
T; h0 =

(
211 × 103

)
m

average width : X̄ = 5 × 106 m,

average height : Z̄ = (1.5−5) × 107 m,

g = 274;
m
s2

; r = 0.25, Bx = 0.8944, Bz∞ = 0.2425,

Lx = 2.96, Lz = 8.88−29.6, 0.13 ≤ k ≤ 0.52. (40)

In order to guarantee equilibrium we required that for the
isothermal static state the radiative loss globally balances with
the heat source. Thus, ι satisfies
∫ Lx/2

−Lx/2
dx
ρ2

m2
χTα =

ι

m2

∫ Lx/2

−Lx/2
dxρ

which as a dimensionless value results ι = 0.158. In spite of the
fact that the heating function is required for the balance of the
equilibrium state, the stability resulted vanishingly dependent

of this ι value. An alternative to this heat function election is the
one proposed by Low & Wu (1981). They introduced a heating
term expressed as a function of the magnetic field, plasma den-
sity and pressure so the isothermal static state is self-consistent
as an unperturbed equilibrium state in which the radiative loss
is balanced at each point by the heat source. While the advan-
tage of the solutions obtained by Lerche and Wu is that it allows
a more general heat function it required a special choice of the
α (α = 1) parameter in order to obtain analytic solutions of the
problem. Our parameter choice was α = 11.7, χ = 1.26×10−83.
Note that, in any case, a more detailed study considering an
extended range of parameters and non-isothermal situations re-
quire numerical analysis.

For the ideal MHD study, and in accordance with Anzer
(1969), Galindo Trejo (1989) and Galindo Trejo & Schindler
(1984), the model results stable due to Bernstein’s MHD cri-
terion. Also, Zweibel (1982), using this energy principle finds
a sufficient condition for the stability of the K-S prominence
model that represents an extension to more realistic situation
i.e. without making an approximation of infinitesimal thickness
of the prominence. Galindo Trejo (1989) postulates a displace-
ment of the form

ξ(x, y, z) =
[
ξx(x, z)ex +ξy(x, z) ey+ξz(x, z) ez

]
eiky (41)

T1(x, y, z) = T1(x, z)eiky. (42)

Then, he obtains that the most general displacement for the
K-S model with a magnetic field By = 0 and T1 = 0 has the
form (36) but with ξ(x, z) = ζx(x, z)ex + iηy(x, z)ey + ζz(x, z) ez.

The displacements must satisfy boundary conditions that
for the case considered here assume the form (T1, ξ)bound = 0.
Then, in function of the perturbations ((41) and (42)) the ex-
tended Bernstein principle that predicts stability acquires the
form

δ2Wp =
1
2

∫ Lx/2

−Lx/2
dx

∫ Lz

0
dz

{
α0ρ0

k2B2
xη

2
y +

(
Bz
∂ζx

∂z
+ Bx

∂ζz

∂z

)2

+

(
Bz
∂ηy

∂z
+ Bx

∂ηy

∂x

)2

+

(
Bz
∂ζx
∂x
+
∂Bz

∂x
ζx − Bx

∂ζz
∂x

)2

+ k2B2
zη

2
y

− ∂Bz

∂x

(
Bzζx
∂ζx
∂x
+ ζ2

x
∂Bz

∂x
− Bxζx

∂ζz
∂x
− kBzηyζx + kBxηyζz

−Bxζz
∂ζz
∂z

)
+ P

(
∂ζx
∂x
+
∂ζz
∂z
+ kηy

)2

+ α1

(
ζx
∂ρ0

∂x

)

×
[
∂ζx
∂x
+
∂ζz
∂z
− kηy

]
+α2ζz

[
∂ (ρ0ζx)
∂x

+
∂ (ρ0ζz)
∂z

− kρ0ηy

]]

+ α3

 B2
x

B2

(
∂T1

∂x

)2 + α4ρ
2
0T 2

1

+α5

[
2ρ0ζx

∂

∂x
(ρ0T1) + 2ρ0ζz

∂

∂z
(ρ0T1) + 2kρ2

0T1ηy

] }
≥ 0 (43)

where,
α0 = 1; α1 = 0.125; α2 = 1

α3 = 7.77 × 10−9; α4 = 0.73125; α5 = 0.125. (44)
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This inequality is also restricted by the normalization condition

1
2

∫ Lx/2

−Lx/2
dx

∫ Lz

0
dzρ2

0

(
ζ2

x + η
2
y + ζ

2
z

)
= 1. (45)

5. Discussion and conclusions

As it is known quiescent prominences are stable structures with
densities about hundreds times higher and temperatures about
hundreds times lower than their surrounding corona. Thus, a
crucial problem is to explain how is this thermal and mechani-
cally possible. Different models in literature intended to attack
the problem in a separated way: Chiuderi et al. (1979) analyzed
the thermal equilibrium problem but discharged the mechanical
one; between the models that investigated the mechanical equi-
librium hypothesis is the early known Kippenhahn-Schluter
model that neglects the important question about thermal equi-
librium (Galindo Trejo 1989; Priest 1982). An attempt to com-
bine the two aspects was made by Lerche & Low (1981)
but their variational approach proceeded with non-self-adjoint
quantities.

Here we proposed a self-adjoint stability criterion that takes
into account the coupled thermal and mechanic balance condi-
tions. This variational principle is a natural extension of the
Bernstein’s stability criterion for ideal MHD to more general
states i.e. state far from thermodynamic equilibrium. The pro-
cedure to obtain the principle followed thermodynamic irre-
versible arguments and techniques.

As an example we applied the method to the known
K-S model in its extension to dissipative situations, and in the
scenario described by usual prominences parameters. The sta-
bility criterion can be rewritten in the form

δ2Wp=δ
2WB +

1
2

∫ Lx/2

−Lx/2
dx

∫ Lz

0
dz

α3

B2
x

B2

(
∂T1

∂x

)2 + α4ρ
2
0T 2

1

+α5

[
2ρ0ζx

∂

∂x
(ρ0T1) + 2ρ0ζz

∂

∂z
(ρ0T1) + 2kρ2

0T1ηy

]}
≥ 0. (46)

The mechanical stability for the most general displacement
(δ2WB; B indicates Bernstein criterion) in the MHD scenario
was already been proved (Galindo Trejo 1989, Galindo Trejo
& Schindler 1984) and thus, δ2WB ≥ 0.

Moreover, considering both thermal and mechanical pertur-
bations, is easy to note from last equation, that when the me-
chanical displacement vanishes (ζx = ζz = ηy = 0), it results
δ2Wp ≥ 0 for any thermal perturbation T1. Note that also, for
any displacement of the form

ζx = ζz = 0, ηy � 0, (47)

the principle acquires the form

δ2Wp = δ
2Wp(ηy) +

1
2

∫ Lx/2

−Lx/2
dx

∫ Lz

0
dz

×
(
B2

0ρ0 + P
)

k2η2
y + α4ρ

2
0T 2

1 + 2α5kρ2
0ηyT1 (48)

with δ2Wp(ηy) ≥ 0. Thus, the quadratic form in (ηy, T1): (B2
0ρ0+

P)k2η2
y + α4ρ

2
0T 2

1 + 2α5kρ2
0ηyT1 ≥ 0. This is, for the K-S model

and for the particular displacement chosen here (considering

Table 1. Periods and wavenumbers: comparison between the results
of the K-S model considering dissipation with Galindo Trejo’s calcu-
lus.

k Lx Lz Pmin PGT min

0.13 2.96 8.88 2.501 16.411

0.3 2.96 8.88 2.003 16.416

0.4 2.96 8.88 2.137 –

0.5 2.96 8.88 2.23 16.427

0.13 2.96 29.6 6.279 16.459

0.3 2.96 29.6 6.521 16.464

0.5 2.96 29.6 6.55 16.474

dissipation), the associated quadratic form is positive definite
because the “principal minors” of the corresponding matrix are
all positive definite. Then, the expression δ2Wp ≥ 0, implies
stable conditions for the range of parameters of the K-S model.

As an example, we applied the variational principle to the
more general mode presented in this work (Eqs. (41) and (42))
to obtain the associated frequencies. In order to accomplish
this task we followed the schematic procedure described by
Galindo Trejo (1987) but we used a symbolic manipulation
program to integrate the equations. δ2Wp and the perturbation
were expanded in a two dimensional-Fourier basin that adjust
to border conditions. Thus, a quadratic form for δ2Wp was ob-
tained and was minimized with the Ritz variational procedure.
Finally, a matrix discrete eigenvalue problem subject to a nor-
malization constraint was obtained. The procedure is equiv-
alent to solve Eq. (34) for Galindo Trejo’s formulation and
Eq. (37) for our modified principle.

As the aim of our analysis was to find stable perturbation
we were interested in the smallest eigenvalue that can be ob-
tained by these procedure. Doing this, for the range of pa-
rameters and the displacement chosen, we obtained that sta-
ble modes with frequencies of about three and five minutes
can be described as normal modes of the K-S model when
dissipative terms are considered. The results are displayed in
Table 1. The parameter range was chosen to be the same as
in Galindo Trejo (1987). From the table it can be seen that
the periods obtained range between 2 m and 6.55 m which is
in agreement with reported observational data (e.g. in Blanco
et al. 1999; Bocchialini et al. 2001). Moreover, comparing our
results with Galindo Trejo’s ones, it can be mentioned that the
dissipative analysis exhibits deeper dependencies that in his re-
sults. We found a more markedly dependence of the period with
the Lz dimension and also we found a more markedly depen-
dence of the period with the wavenumber. The period augments
with Lz increasing. Note that the Lz value more nearer to the
3 m period is Lz = 8.88 while the Lz value more nearer to the
5 m period is Lz = 29.6. Also, k = 0.13 represent the nearest
wavenumber associated to the periods we are interested in (3 m
and 5 m).

The example presented here is an illustrative one. It shows
how the principle – the extension of Bernstein’s principle to sit-
uations far from thermodynamic equilibrium – can be used in
its application to the K-S model. It allowed us to obtain relevant
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information of the K-S prominence model when considered
as a dissipative structure i.e., the periods associated to normal
modes. Moreover, firm conclusions about type and structure
of modes and the dependence between structures, wavenumber
and periods must wait for a numerical analysis that explores
different scales and prominence models. This point needs a
complete eigenmode and eigenvalue analysis and will be ac-
complished in a next work.

6. Appendix: A simple illustrative example

In this Appendix we present the one-dimensional simple text-
book example of the Rayleigh-Bénard convection in order to
illustrate the procedure of the criterion2. Bénard (1900) per-
formed experimental studies to consider the stability of a nearly
incompressible liquid and Rayleigh (1916) found the analytic
condition for stability. Convection is the response of a sys-
tem submitted to an unstable stratification of the density where
the destabilizing force is the differential buoyancy suffered by
a particle subject to a temperature fluctuation. Liquid incom-
pressibility means that the density does not change on the appli-
cation of pressure. However, it is necessary to take into account
that the density decreases raising the temperature allowing the
action of the differential buoyancy. With these considerations
the liquid can become unstable to convection because the hotter
lighter liquid at the bottom pushes to come on top of the colder
liquid above. A simplified approach in terms of a temperature
fluctuation θ coupled to the vertical motion vz is sufficient to
account for the main features of the instability mechanism.
Moreover, since only the differential buoyancy between fluid
particles at the same altitude is involved, a model including
only the horizontal dependence is sufficient to describe the re-
quired condition. The balance of energy equation that describes
the problem is (Manneville 1987):

∂T
∂t
+ u · ∇T = κ∇2T (49)

where κ = K
ρcp

is the heat diffusivity; K, the thermal conduc-
tivity, is assumed to be constant, ρ is the density and cp is the
specific heat. If Tb and Tt are the temperatures at the bottom
and the top of the liquid, then the equilibrium solution (i.e. the
solution with ∂

∂t = 0 and u = 0) of the energy equation results:

T0(z) = Tb − βz, where β =
Tb − Tt

d
· (50)

We consider a temperature fluctuation in the horizontal direc-
tion T = T0(z) + θ(x) (T0(z) the equilibrium temperature) and
the associated perturbation in the velocity vz(x), (v0 = 0). Thus,
the temperature distribution generates a density distribution

ρ0(z) = ρ(T0(z)) = ρb(1 + αβz) (51)

where α is the coefficient of volume expansion with tempera-
ture. Then, the differential buoyancy reads

−g(ρ − ρ0) = g(ρ(T0(z)) − ρ(T0 + θ) = ρbαgθ. (52)

2 The extension of the procedure to analyze the stability of the two
dimensional problem is also straightforward.

Thus, the equation of motion, neglecting the vertical depen-
dence of the fluctuation results:

v̇z − ν∂2
xvz − αgθ = 0 (53)

where ν = η/ρ is the kinetic viscosity and η is the dynamic
viscosity. Note that an augment of v̇z corresponds an augment
of θ meaning that to an upwards acceleration corresponds a
positive temperature fluctuation3.

Linearizing the energy equation, replacing the expression
of T0(z) and discarding second order terms we obtain:

θ̇ − κ∂2
xθ − βvz = 0. (54)

Multiplying the first equation by β, and the second one by αg,
the compact matrix expression for the stability criterion is ob-
tained:

x =

∣∣∣∣∣∣ vzT1

∣∣∣∣∣∣ , and

M =

∣∣∣∣∣∣ 0 0
0 0

∣∣∣∣∣∣ , S =

∣∣∣∣∣∣−νβ∂
2
x −αgβ

−αgβ −καg∂2
x

∣∣∣∣∣∣ , and R =

∣∣∣∣∣∣ β 0
0 αg

∣∣∣∣∣∣ · (55)

Taking into account that {vz, θ} = {V,Θ} cos(kx) (Manneville
1987), then:

δ2S =
1
2

[∫
D

dx
(
νβk2V2 − 2αgβVΘ + αgκk2Θ2

)
cos2(kx)

]
(56)

where D is the one-dimension domain of integration. The inte-
grand results a quadratic form in V and Θ. Thus, due to the fact
that the diagonal terms are positive (νβk2 > 0 and αgκk2 > 0,
also β > 0 meaning that the liquid is heated from bellow), the
positive definiteness of δ2S stands on the requirement that the
determinant ∆ = αgβ(νκk4 − αgβ) is positive. Then, in order to
guarantee stability the condition that β < νκk

4

αg is required; when

β > νκk
4

αg
the system is unstable and when β = νκk

4

αg
the stability

is marginal as is shown in Manneville (1987) using a normal
modes analysis.
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