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ABSTRACT. Let X be a complete toric variety with homogeneous coordinate
ring S. In this article, we compute upper and lower bounds for the codimension
in the critical degree of ideals of S generated by dim(X) + 1 homogeneous
polynomials that do not vanish simultaneously on X.

INTRODUCTION

In this paper, X will denote a complete toric variety of dimension n. We will
work over C, so that the torus of X is (C*)". The dual lattices will be denoted
by M and N as usual, and the minimal edge generators of the fan of X will be
denoted by ni,...,n, € N. Corresponding to each n; we have the irreducible
torus-invariant divisor D; and the variable x; in the homogeneous coordinate ring
S = Cl[zy,...,x,], which is graded by the Chow group A, _1(X).

Consider a torus-invariant Cartier divisor D = >, a;D; such that Ox (D) is
generated by global sections. In Section[I], we recall a vanishing theorem of Batyrev
and Borisov [2] that describes H*(X, Ox(—D)) in terms of the polytope

Ap ={me Mg | (m,n;) > —a;}.
By Serre duality, we get a description of
H'(X,0x(D + K)),

where K is the canonical class.

In Section Bl we consider homogeneous polynomials fo,..., f, € S of degrees
g, ..., an € Ap_1(X) which satisfy the following two properties: first, the f; do not
vanish simultaneously on X, and second, each «; lies in Pic(X) and the correspond-
ing line bundle Ox(«;) is generated by global sections. By abuse of terminology,
we will say that a; is globally generated in this situation.
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3154 DAVID COX AND ALICIA DICKENSTEIN

Following [4], we define the critical degree to be

n

(0.1) p=> ai—f

i=0
where Gy = >7_ deg(z;), and we let
I = <f0,...,fn> cS

be the homogeneous ideal generated by the f;. Then the Codimension Question
asks what is the dimension of (S/I),, i.e., what is the codimension of I, in S,?

The main result of Section 2lcomputes upper and lower bounds for this codimen-
sion, when the associated family of polytopes is essential. In particular, it is always
nonzero. The assumption of having an essential family is natural since it is neces-
sary for the existence of a nontrivial sparse resultant whose vanishing is equivalent
to the condition that the f; do not have common zeros on X (see [I1]). We also
give further geometric conditions on the polytopes under which the codimension at
the critical degree attains the upper bound that we present.

When the divisors involved are big and nef, our results imply that the codimen-
sion is 1. The first toric codimension-one theorem, proved in [7] using ideas from
[1], assumed that the a; were all equal to the class of a single ample divisor. This
was extended in [5] to the case when the «; were positive integer multiples of a sin-
gle ample class. In the general case when the «; are all ample, a codimension-one
theorem was proved in [4] provided that X was simplicial. All of these results now
follow from part (1) of Corollary

The codimension in the critical degree is important because of its relation to
the theory of toric residues [3], 4, Bl [7, [8]. Toric residues are rational functions
of the coefficients of the given polynomials fy, ..., f,; moreover, they are rational
hypergeometric functions determined by the lattice points of the associated family
of polytopes, with poles at the resultant locus [6]. As described in [7], a homoge-
neous polynomial H of critical degree gives rise to a rational n-form on X. Since
the f; do not vanish simultaneously on X, this n-form represents an element of
H"(X, ﬁ}) ~ H"(X,0x(—fp)). The toric residue of H is defined to be the trace
of this cohomology class. If the codimension is one and we have an explicit element
J of critical degree with known residue, then the computation of the toric residue of
H is reduced to writing H = ¢J modulo I. When all degrees are equal and ample,
a choice of J is the toric Jacobian [7] associated to fo,..., fn. In case all degrees
are ample, explicit elements with residue equal to 1 are known [4}, [§], but it is still
an open problem to find such elements in the big and nef but not ample case.

1. THE VANISHING THEOREM

Now let D be a torus-invariant Cartier divisor on a complete toric variety X.
We define the polytope Ap as in the introduction and we use int(Ap) to denote
the relative interior of Ap. Here is the vanishing theorem from [2, Thm. 2.5].

Theorem 1.1. Let D be a torus-invariant Cartier divisor on a complete toric
variety X and let Ap be the polytope defined above. If Ox (D) is generated by
global sections, then:

(1) Hi(X,0x(-D)) =0 for i # dim(Ap).
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(2) There is an isomorphism

HIMAD) (X Ox(—D)) ~ b cxm
meMnint(Ap)

n

which is equivariant with respect to the natural (C*)™ action on each side.

Remark 1.2. We should note that for a complete toric variety X, the sheaf Ox (D)
is generated by its global sections if and only if D is a nef divisor (this observation
appears in [9] and [10]). Also, in the terminology of [9], such a divisor D is called
{-semiample, where ¢ = dim(Ap).

Using Serre Duality, we get the following corollary of Theorem [Tl As usual,
K = Kx denotes the canonical divisor of X.
Corollary 1.3. Under the same hypotheses as Theorem [l we have:
(1) H(X,0x(D + K)) =0 fori #n —dim(Ap).
(2) There is an isomorphism
andim(AD)(onx(DjLK)) ~ @ C-y™
meMNint(Ap)

n

which is equivariant with respect to the natural (C*)™ action on each side.

Proof. We know that K is given by the Weil divisor — Z;Zl D;. By Serre Duality,
H(X,0x(D) ®0y Ox(K)) = H™ (X, 0x(~D))"
However, given any Weil divisors E and F on X, the natural map
Ox(E)®o,O(F) — Ox(E+ F)

is easily seen to be an isomorphism when F or F' is Cartier. Since D is Cartier by
assumption, the above duality may be written

HY(X,0x(D+ K))~ H"(X,0x(-D))".

By functoriality, this is compatible with the (C*)™ action on everything. From here,
the corollary follows immediately from Theorem [T.1] O

Remark 1.4. When D is big and nef, we have dim(Ap) = n. Then Corollary
implies that
HY(X,0x(D+ K))=0, i>0.

This is the Kawamata-Viehweg vanishing theorem from [10].

2. CODIMENSION IN THE CRITICAL DEGREE

As in the introduction, fix ag,...,a, € Pic(X) C A,—1(X) such that each o
is globally generated. This implies that each «; determines a lattice polytope A;
which is well-defined up to translation by an element of M.

Given polynomials f; € S, (so that deg(f;) = «;), we obtain the homogeneous
ideal I = (fo,..., fn) C S. We want to study the codimension of I, in S,, where
p=>1_oa;— B is the critical degree (I.I)).

Before stating our main result we need a definition.
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Definition 2.1. Let A;, i € I, be polytopes in R". Given J C I, set
Ay =24
The family {A;,i € I'} is called essential if for every J C I with |J| < n, we have
dim(A ) > |7,
We will also use the standard notation
(2.1) I*(A) = #(M Nint(A))

to denote the number of lattice points of a polytope A which lie in the relative
interior of A.
Here is our codimension theorem.

Theorem 2.2. Suppose that X is a complete toric variety of dimension n. Let
a; € Pic(X), 0 < i < n, be globally generated and assume that the corresponding
family of polytopes {A;,0 < i < n} is essential. If f; € Sa,, 0 < i < n, do not
vanish simultaneously on X, then:

(1) The codimension of I, in S, satisfies the inequalities

n—1
1+ Y IF(Ay) <dim((S/1),) <1+ oAy,

dim(Ag)=1 k=1dim(A ;)=|J|=k

where in the right-most sum we always assume that J C {0,...,n}.
(2) The codimension of I, in S, is given by

n—1
dim((S/T),) =1+ > I"(A))

k=1 dim(A ;)=|J|=k

if one of the following is satisfied for every J with 1 < |J] <n —2:

(a) dim(As) £ 7]+ 1;

(b) dim(Ay) = |J| + 1 but Ay has no interior lattice points;

(c) dim(Ay) = |J| + 1 but dim(Ayur) > |J| + |I| for nonempty subsets

I c{0,...,n} such that INJ =0 and |J| + |I| < n.
Proof. Since f; is a global section of Ox(«a;), we get a Koszul complex

0— Ox (=) ,a;) =+ — @(’)X(—ai) — O0x — 0,

which is exact since each Ox () is locally free and the f; have no common zeros.

By hypothesis, each sheaf in the Koszul complex is locally free. Since the sheaf
Tor?X (€, F) vanishes whenever i > 0 and & or F is locally free, it follows that the
Koszul sequence remains exact after tensoring with O(p) = O(ag + -+ + @, — Bo)
(which need not be locally free). This gives the exact sequence

0 — Ox(=3_;04) ®ox Ox(p) = - — @ Ox(—a;) ®ox Ox(p) = Ox(p) — 0.

Since the «a; all come from Cartier divisors, the reasoning used in the proof of
Corollary implies that we can write this exact sequence as

0 — Ox (=) = P Ox (i = Bo) = -+ = Ox(ag+ -+ an — flo) = 0.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



CODIMENSION THEOREMS FOR COMPLETE TORIC VARIETIES 3157

) o —di> 0 —dz> e d\S

ds do da

o e —d>0—d; >0 —d,> e —d,> e
FIGURE 1. Possible nonzero differentials when n = 4

Using p = ag + - - - + a, — Bp, this becomes

(22) 0— Ox(—fo) = @ Ox(ai = Bo) == E Ox(p — ax) — Ox(p) — 0.
k

—— i N——
Fo Fn+l

fl fn
We will now study the hypercohomology of the complex F*.
Since (2:2) is exact, the hypercohomology H* (X, F*) vanishes identically. Hence
we get a spectral sequence
EYT=HY(X,F?)=0

where the differential @7 : EP? — EP*h? is induced by the map FP — FP+l of
the Koszul complex (Z2).

We compute EV? as follows. When p = 0,
3 0,q : O? qg<mn,
(23) () = dim (X, Ox () = 4 T 0=

where ¢ = n uses the isomorphism H™(X,Ox(—fp)) = H"(X,Ox(K)) ~ C given
by the trace map.
When p > 0, we have

FP = @ Ox(ay —fBo), oy =2,

|J|=p
Then Corollary and (Z1) imply that
(24) dim(EP?) = Y dim (H(X, Ox(ay — fo))) = > I (A)).
[J]=p |J|=p,dim(A ;)=n—q

Our assumption that {A;,0 <4 < n} is essential implies that dim(A ;) > |J| when
|J| < n. Combining this with |J| = p, dim(A;) = n — ¢ from (Z4)), we see that
n —q > p when p < n in the last summation of (Z4)). Thus

(2.5) E?% =0 when p+ g > n, except for E?H’O =85,

When n = 4, (Z3) and (Z3) give the picture shown in Figure 1 of all possible
nonzero differentials in the spectral sequence.
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. 1 2 .
Now consider E*t1.0, By (Z2), E}*° — E}TH0 — BP0 4s

@Sp,ak — S, — 0.
k

Since this comes from the Koszul complex of the f;, the image of the first map is
1,. It follows that

En+10 (S/I)

All differentials starting from E3 "% obviously vanish, and the only differentials
which can map to this position are those on the “diagonal” p+q = n as in Figure 1.
Furthermore, on the diagonal, the only nonzero differentials dj}~%% are d, {7 :

- 1,0
ErTee _, gl

q+1 q+1
that

. Since the spectral sequence converges to zero, it follows easily

dim((S/I),,) Z m(E} 09

By 23) and (Z4), we get the upper bound of part (1) of the theorem. As for the
lower bound, note that the differentials

0,n n+1,0 Ln—1. pln-1 _, n+1,0
Aoty BOT — Er0 and dhnTl BTN BN

must be injective since the spectral sequence converges to 0 and nothing can map
to these positions. (In Figure 1, these correspond to the differentials ds and dy.)
Using (2.3) and ([2.4) again, we get the lower bound of part (1).

Turning to part (2) of the theorem, suppose that every differential d,, mapping
to BP9 is zero for p + ¢ = n and ¢ > 0. Since the spectral sequence converges to
zero, this implies that

dim((S/1),) Zdlm E7T9)

From this, we easily get the desired formula for the codimension. Hence it suffices
to prove that these differentials vanish when condition (a), (b) or (c) is satisfied
by any J with 1 < |J| < n — 2. A differential mapping to the diagonal p+ ¢ =n
originates from the “sub-diagonal” p 4+ ¢ = n — 1. Thus we need to prove that all
differentials

dg,q . Ef’q _ Eerr,qfrJrl

vanish when p+g=n—1landg—r+1>0 (ie., r <gq).
To analyze this, first note that for arbitrary (p, q), Corollary [[.3] implies that

(2.6) EPT = &b Hy,
|J|=p,dim(A j)=n—q

where

(2.7) H;=HYX,0x(as— )= € C-x™
meMNint(A )

In particular, when p + ¢ = n — 1, the description of EV"? becomes

EPT = &y Hj.

dim(A y)=|J|+1=n—q
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The subsets J C {0,...,n} in this direct sum satisfy
(2.8) [Jl=p=n—q¢—1<n-2 and dim(A;)=n-g=|J|+1.
Every J in the discussion which follows will satisfy (2.8).

Now consider d?¢ : EP? — EP™9 for p4+ g =n—1 and ¢ > 1. By (7) and
(28), we see that H; = 0 when J satisfies conditions (a) or (b) of part (2) of the

theorem. Now suppose J satisfies condition (c¢). Since d; comes from the Koszul
complex, ([Z6) for (p+ 1,q) shows that d}"? restricted to H; is a map

d]f’q H; — @ HJu{i}~
i¢ J,dim(A yuqi))=n—q
By condition (c), we know that dim(A jug;3) > [J|+1fori ¢ J. But |J|=n—q—1
by (2.8), so that dim(A juq3) > n — ¢. Comparing this to the above description of
d?? shows that d)"? =0 when p+¢=n—1 and ¢ > 1, as claimed.

Next consider dy? : E2? — EET297! where p+q = n—1and ¢ > 2. To
understand this map, we will recall its definition which follows from the Snake
Lemma. Let U be a Leray covering of X, so that the cohomology groups H4(X, FP)
can be identified with the Cech cohomology of X with respect to this covering. As
usual, we call § the maps between cochain groups. Also let

Z9U, FP) € CIU, FP)

denote the corresponding Cech group and its subgroup of cocycles. Then we com-
pute ds using the following diagram:

ot U, FrHY) D co (U, FrE?)
4l
zU, )y L zau, Fr)
1 |
0— ker(dy) — HIX,FP) L Ha(X,Fr+)
l ! l
ER 0 0
!
0

In this diagram, s € EL'? lifts to an element of EY"Y = HY(X, FP) represented by
s' € Z9U,FP). Then

(2.9) di(s') € 29U, FP)

represents 0 € H9(X, FPTY). Thus d; (') lifts to Z9=1 (U, FPT1), ie., di(s') = 6(s")
for some s” € Z971(U, FP+1). It is then easy to see that

(2.10) dy(s") € 297U, FPT2),

so that dy(s”) represents an element of EPT>77 1 = He=1(X, FP*2). This is killed
by d; and represents db?(s) € E§+2’q_1. It follows that dy is constructed by
applying d; twice to suitable liftings.

Since d}’? vanishes, E5"? is a quotient of E7"?. So we may assume that s € EY?
comes from H; for some J satisfying (Z8). As before, this vanishes if J satisfies
conditions (a) or (b) of part (2). Now assume J satisfies condition (c¢). Then as
above s gives s € Z9(U, FP) where we only use the summand of F? corresponding
to J. Since d; comes from the Kozsul complex, we see from (2.9) that d;(s") only
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involves summands of FP*! corresponding to J U {i} for i ¢ J. Then the same is
true for s”, so that in (ZZI0), d; (s”) only involves summands of FP*! corresponding
to JU{i,j} fori,j ¢ J and ¢ # j.

This shows that d3?(s) € EET97! is represented by an element of EPT*7!
involving only summands H y; ;3 for i, j ¢ J and i # j. Yet to actually appear in
EPT2971 the summand must satisfy n — (¢ — 1) = dim(A jugi,53) by @8). This is
impossible since condition (c) implies that

dim(Aju) > +2=n—-qg—1)+2=n—(¢g—1).

It follows that d5? =0 when p+¢=mn—1 and q > 2.

The argument for general r is similar. Here, p + ¢ = n —1, ¢ > r, and
d?, ..., d>? vanish. Then EPY is a quotient of ET'?, so we may assume that
s € EP9 comes from H; for J as in (2.8). Since d; comes from the Koszul com-
plex and d, is obtained by applying d; r times to suitable liftings, we see that
dp1(s) € EPtma=m+L ig represented by an element of EPT"?" ! inyolving only
summands Hyy; for |I| = r and INJ = ). In order to appear in EPT™47 "1 the
summand must satisfy n — (¢ — r + 1) = dim(Au;7) by 8). This is impossible
since condition (c) implies that

dim(Agur) > 1]+ = (n—q—1)+r=n—(g—7r+1).
It follows that d?? = 0 when p+ ¢ =n — 1 and ¢ > r. This completes the proof of
the theorem. O

Theorem has the following corollaries.

Corollary 2.3. Let Ag,...,A, be an essential family of lattice polytopes in R™.
Then the Minkowski sum Ag + - -+ + A, has at least one interior lattice point.

Proof. If X is the toric variety determined by A = Ag+---+ A, then dim(S,) is
the number of interior lattice points of A. The lower bound given by Theorem
implies that dim(S,) > dim((S/I),) > 1, and the corollary follows. O

Remark 2.4. Corollary 2.3 may fail if Ay,..., A, are not essential. For example,
suppose that A; +---+ A, has dimension n —1 and 4 is an interval of length one
relative to an integral linear functional constant on the affine hyperplane containing
Ay + -+ A,. It is easy to see that Ag + - -+ + A, has no interior lattice points.
We are grateful to Gilinter Ziegler for this observation.

Corollary 2.5. Suppose that X is a complete toric variety of dimension n. Let
a; € Pic(X), 0 <i < n, be globally generated and assume that f; € Sa,, 0 <1 <mn,
do not vanish simultaneously on X. Then:

(1) If the polytopes A; all have dimension n, then
dim((S/1),) = 1.
(2) If n =2 and {Ag, A1, Ao} is essential, then

dim((S/1),) =1+ > I*(Ay).

dim(A;)=1

Proof. This follows immediately from part (2) of Theorem 2. O
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Remark 2.6. In part (1) of Corollary 23], the hypothesis that «; is globally generated
and A; has dimension n is equivalent to assuming that «; is the class of a big and
nef divisor on X.

When n = 3, the conditions of part (2) of Theorem are equivalent to the
assumption that if dim(4A;) = 2, then either A; has no interior lattice points or
dim(A; +A;) = 3 for all j # i. It follows that Theorem [ZZ] computes the codimen-
sion in the critical degree for many but not all cases of essential supports when X
has dimension 3.

There is one case where further general results are possible.

Theorem 2.7. Suppose that X is a complete toric variety of dimension n > 3. Let
a; € Pic(X), 0 < i < n, be globally generated and assume that the corresponding
family of polytopes {A;,0 < i < n} is essential and satisfies

(2.11) dim(A;) € {I,n—1,n}, i=0,...,n.
Let f; € Sa,, 0 <i < n, and assume the following two conditions:
(1) The f; do not vanish simultaneously on X.
(2) For every J C {0,...,n} withdim(Ay) =|J| =n—1 and dim(A;) =n—1
for at least one i € J, the equations on XA, given by f; =0 for j € J have
only finitely many solutions, all of which lie in the torus of Xa,.

Then the codimension of I, in S, is given by

212 dn(sm) =1+ ¥ (S0 S ),

dim(A)=|J|<n NTCJI
where, for a lattice polytope A and integer k > 0,

coay 0, dim(A) # &,
(A) = {l*(A), dim(A) = k.

The condition (2ITI) is still rather restrictive, yet examples with n = 4 show
that the formula (ZI2) can fail when we omit (ZIIl). Furthermore, when we do
assume (ZTTI), condition (2) on the f; is probably unnecessary, yet we cannot figure
out how to prove the theorem without using this hypothesis. For these reasons, we
omit the proof of Theorem 1
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