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G-STRUCTURE ON THE COHOMOLOGY OF HOPF ALGEBRAS

MARCO A. FARINATI AND ANDREA L. SOLOTAR

(Communicated by Martin Lorenz)

Abstract. We prove that Ext•A(k, k) is a Gerstenhaber algebra, where A
is a Hopf algebra. In case A = D(H) is the Drinfeld double of a finite-
dimensional Hopf algebra H, our results imply the existence of a Gerstenhaber
bracket on H•GS(H,H). This fact was conjectured by R. Taillefer. The method
consists of identifying H•GS(H,H) ∼= Ext•A(k, k) as a Gerstenhaber subalgebra
of H•(A,A) (the Hochschild cohomology of A).

Introduction

The motivation of this paper is to prove that H•GS(H,H) has a structure of a G-
algebra. The G-algebra structure is, roughly speaking, the existence of two products
with compatibilities between them: one is associative graded commutative, and the
other is a graded Lie bracket. We prove this result when H is a finite-dimensional
Hopf algebra (see Theorem 2.1 and Corollary 2.5). H•GS is the cohomology theory
for Hopf algebras defined by Gerstenhaber and Schack in [4]. In order to obtain
commutativity of the cup product we prove a general statement on Ext groups over
Hopf algebras (without any finiteness assumption).

When H is finite dimensional, the category of Hopf bimodules is isomorphic to
a module category, over an algebra X (also finite dimensional) defined by Cibils
and Rosso (see [2]), and this category is also equivalent to the category of Yetter-
Drinfeld modules, which is isomorphic to the category of modules over the Hopf
algebra D(H) (the Drinfeld double of H). In [10], Taillefer has defined a natural
cup product in H•GS(H,H) = H•b (H,H) (see [5] for the definition of H•b ). When
H is finite dimensional, she proved that H•b (H,H) ∼= Ext•X(H,H), and using this
isomorphism she showed that it is (graded) commutative. In a later work [11] she
extended the result of commutativity of the cup product to arbitrary-dimensional
Hopf algebras, and she conjectured the existence (and a formula) of a Gerstenhaber
bracket.

Our method for giving a Gerstenhaber bracket is the following: under the equiv-
alence of categories X -mod ∼= D(H)-mod, the object H corresponds to HcoH = k.
So Ext•X(H,H) ∼= Ext•D(H)(k, k) (isomorphism of graded algebras); according to
Ştefan [8] one knows that Ext•D(H)(k, k) ∼= H•(D(H), k). In Theorem 1.8 we prove
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that, if A is an arbitrary Hopf algebra, then H•(A, k) is isomorphic to a subalge-
bra of H•(A,A)—in particular, it is graded commutative—and the morphisms are
defined at the complex level. In Theorem 2.1 we prove that the image of C•(A, k)
in C•(A,A) is stable under the brace operation (if M is an A-bimodule, C•(A,M)
denotes the standard Hochschild complex whose homology is H•(A,M)); in partic-
ular, the image of H•(A, k) is closed under the Gerstenhaber bracket of H•(A,A).
So, the existence of the Gerstenhaber bracket on H•GS(H,H) follows, at least in
the finite-dimensional case, by taking A = D(H). We did not know if this bracket
coincides with the formula proposed in [11], but Taillefer, in a personal commu-
nication, told us that, using arguments as in [7], one can actually prove that the
bracket given by us, in the finite-dimensional case, must agree with the bracket
proposed by her. Nevertheless, the argument does not give a proof of existence in
the infinite-dimensional case. So the problem, in that generality, remains open.

We also provide a proof that the algebra Ext•C(k, k) is graded commutative when
C is a braided monoidal category satisfying certain exactness hypotheses (see Theo-
rem 1.4). This gives an alternative proof of the commutativity of the cup product in
the arbitrary-dimensional case by taking C = H

HYD, the category of Yetter-Drinfeld
modules.

In this paper A will denote a Hopf algebra over a field k.

1. Cup products

This section has two parts. First we prove a generalization of the fact that
the cup product on group cohomology H•(G, k) is graded commutative. The gen-
eral abstract setting is that of a braided (abelian) category with enough injectives
satisfying an exactness condition (see Definition 1.2 below). The other part will
concern the relation between self extensions of k and Hochschild cohomology of A
with coefficients in k.

Let us recall the definition of a braided category:

Definition 1.1. The data (C,⊗, k, c) is called a braided category with unit ele-
ment k if

(1) C is an abelian category.
(2) − ⊗ − is a bifunctor, bilinear, associative, and there are natural isomor-

phisms k ⊗X ∼= X ∼= X ⊗ k for all objects X in C.
(3) For all pair of objects X and Y , cX,Y : X ⊗ Y → Y ⊗ X is a natural

isomorphism. The isomorphisms cX,k : X ⊗ k ∼= k ⊗ X agree with the
isomorphism of the unit axiom, and for all triples X , Y , Z of objects in C,
the Yang-Baxter equation is satisfied:

(idZ⊗cX,Y )◦(cX,Z⊗ idY )◦(idX⊗cY,Z) = (cY,Z⊗ idX)◦(idY ⊗cX,Z)◦(cX,Y ⊗ idZ).

A data (C,⊗, k) satisfying axioms 1 and 2, but not necessarily axiom 3 is called a
monoidal category.

We will use the notion of exact functor for a monoidal structure.

Definition 1.2. Let (C,⊗, k) be an abelian monoidal category. We say that ⊗ is
exact if and only if the canonical morphism

H∗(X∗, dX)⊗H∗(Y∗, dY )→ H∗(X∗ ⊗ Y∗, dX⊗Y )

is an isomorphism for all pairs of complexes in C.
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Example 1.3. Let H be a Hopf algebra over a field k. Then C =H-mod is a
monoidal category with ⊗ = ⊗k, and this functor is clearly exact.

Theorem 1.4. Let (C,⊗, k, c) be a braided category with enough injectives and
exact tensor product. Then Ext•C(k, k) is graded commutative.

Proof. We proceed as in the proof that H•(G, k) is graded commutative (see for
example [1], page 51, Vol. I). The proof is based on two points: first a definition of
a cup product using the bifunctor ⊗, and second a lemma relating this construction
and the Yoneda product of extensions.

Let 0 → M → Xp → . . . X1 → N → 0 and 0 → M ′ → X ′q → . . . X ′1 → N ′ → 0
be two extensions in C. Then N∗ := (0 → M → Xp → . . .X1 → 0) and N ′∗ :=
(0 → M ′ → X ′q → . . . X ′1 → 0) are two complexes, quasi-isomorphic to N and N ′

respectively. By the Künneth formula, N∗ ⊗ N ′∗ is a complex quasi-isomorphic to
N ⊗ N ′. So “completing” this complex with N ⊗ N ′ (more precisely considering
the mapping cone of the chain map N∗ ⊗ N ′∗ → N ⊗ N ′) one has an extension in
C, beginning with M ⊗M ′ and ending with N ⊗N ′.

So, we have defined a cup product:

ExtpC(N,M)× ExtqC(N
′,M ′)→ Extp+qC (N ⊗N ′,M ⊗M ′).

We will denote this product by ⊗, and the Yoneda product by ^. The lemma
relating this product and the Yoneda one is the following:

Lemma 1.5. If η ∈ ExtpC(M,N) and ξ ∈ ExtqC(M
′, N ′), then

η ⊗ ξ = (η ⊗ idN ′) ^ (idM ⊗ ξ).

Proof of the Lemma. Interpreting the elements η and ξ as extensions, it is clear
how to define a morphism of complexes (η ⊗ idN ′) ^ (idM ⊗ ξ) → η ⊗ ξ, and by
the Künneth formula, it is a quasi-isomorphism.

In the particular case that M = M ′ = N = N ′ = k, the lemma implies that
η ⊗ ξ = η ^ ξ for all η and ξ in Ext•C(k, k). Now the theorem is a consequence
of the isomorphism (X∗ ⊗ Y∗, dX⊗Y ) ∼= (Y∗ ⊗ X∗, dY⊗X), valid for every pair of
complexes in C, defined by

(−1)pqcX,Y : Xp ⊗ Yq → Yq ⊗Xp.

Note that the differentials are morphisms in the category C. So the map defined
above commutes with the differentials because of the bifunctoriality of the braiding.

�

Example 1.6. Let H be a cocommutative Hopf algebra. Then H -mod is braided
with c the usual flip. When H = k[G] we recover that H•(G, k) is graded com-
mutative. The other typical example is H = U(g), the enveloping algebra of a Lie
algebra g. It is known that ExtU(g))(k, k) = Λ∗(g), is graded commutative.

Example 1.7. Let H be an arbitrary Hopf algebra with bijective antipode and
C = H

HYD the category of Yetter-Drinfeld modules over H . It is well known (see
[6], p. 214) that the map M ⊗N → N ⊗M defined by m⊗ n 7→ m−1n⊗m0 is a
braiding on H

HYD. So ExtH
HYD(k, k) is graded commutative.

Theorem 1.8. If A is a Hopf algebra, then Ext•A(k, k) ∼= H•(A, k). Moreover,
H•(A, k) is isomorphic to a subalgebra of H•(A,A).
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Proof. After Ştefan [8], since A is an A-Hopf Galois extension of k, H•(A,M) ∼=
Ext•A(k,Mad) for all A-bimodules M .

Here, Mad denotes the left H-module with underlying vector space M , but with
structure h.adm := h1mS(h2). The notation (S for the antipode, and the Sweedler-
type summation) is the standard one.

In particular, H•(A, k) = Ext•A(k, k). But one can give, for this particular case,
an explicit morphism at the complex level. In order to do this, we will choose a
specific resolution of k as a left A-module. Notice that, in particular, our argument
will give an alternative proof of Stefan’s result for this case.

Let C∗(A, b′) be the standard resolution of A as an A-bimodule, namely Cn(A, b′)
= A⊗A⊗n⊗A and b′(a0⊗. . .⊗an+1) =

∑n
i=0(−1)ia0⊗. . .⊗ai.ai+1⊗. . .⊗an+1 (ai ∈

A). This resolution splits on the right. So (C∗(A)⊗A k, b′ ⊗ idk) is a resolution of
A⊗A k = k as a left A-module. Using this resolution, Ext•A(k, k) is the cohomology
of the complex (HomA(C∗(A) ⊗A k, k), (b′ ⊗A idk)∗) ∼= (Hom(A⊗∗, k), ∂). Under
this isomorphism, the differential ∂ is given by

(∂f)(a1 ⊗ . . .⊗ an) = ε(a1)f(a2 ⊗ . . .⊗ an)

+
n−1∑
i=1

(−1)if(a1 ⊗ . . .⊗ ai.ai+1 ⊗ . . .⊗ an) + (−1)nf(a1 ⊗ . . .⊗ an−1)ε(an),

which is precisely the formula of the differential of the standard Hochschild complex
computing H•(A, k).

One can easily check that the cup product on Ext•A(k, k) which, by Lemma 1.5
equals the Yoneda product, corresponds to the cup product on H•(A, k). So this
isomorphism is an algebra isomorphism.

Now we will give two multiplicative maps H•(A, k)→ H•(A,A) andH•(A,A)→
H•(A, k). Consider the counit ε : A→ k. It is an algebra map, and so the induced
map ε∗ : H•(A,A) → H•(A, k) is multiplicative. We will define a multiplicative
section of this map.

Let f : A⊗p → k be a Hochschild cocycle, and define f̂ : A⊗p → A by the formula

f̂(a1 ⊗ . . .⊗ ap) := a1
1 . . . a

p
1.f(a1

2 ⊗ . . .⊗ a
p
2)

where we have used the Sweedler-type notation with summation symbol omitted:
ai1 ⊗ ai2 = ∆(ai), for ai ∈ A.

Let us check that f̂ is a Hochschild cocycle with values in A,

∂(f̂)(a0 ⊗ . . .⊗ ap) = a0f̂(a1 ⊗ . . .⊗ ap)

+
p−1∑
i=0

(−1)i+1f̂(a0 ⊗ . . .⊗ ai.ai+1 ⊗ . . .⊗ ap) + (−1)p+1f̂(a0 ⊗ . . .⊗ ap−1)ap

= a0.a1
1 . . . a

p
1.f(a1

2 ⊗ . . .⊗ a
p
2) + (−1)p+1a0

1 . . . a
p−1
1 .f(a0

2 ⊗ . . .⊗ a
p−1
2 )ap

+
p−1∑
i=0

(−1)i+1a0
1 . . . a

i
1a
i+1
1 . . . ap1.f(a0

2 ⊗ . . .⊗ ai2.ai+1
2 ⊗ . . .⊗ ap2).
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Using that f is a Hochschild cocycle with values in k, we know that

0 = ε(a0)f(a1 ⊗ . . .⊗ ap) +
p−1∑
i=0

(−1)i+1f(a0 ⊗ . . .⊗ ai.ai+1 ⊗ . . .⊗ ap)

+ (−1)p+1f(a0 ⊗ . . .⊗ ap−1)ε(ap).

So, the summation term in ∂(f̂) can be replaced using the equality

p−1∑
i=0

(−1)i+1a0
1 . . . a

i
1a
i+1
1 . . . ap1.f(a0

2 ⊗ . . .⊗ ai2.ai+1
2 ⊗ . . .⊗ ap2)

= −a0
1 . . . a

p
1.
(
ε(a0

2)f(a1
2 ⊗ . . .⊗ a

p
2) + (−1)p+1f(a0

2 ⊗ . . .⊗ a
p−1
2 )ε(ap2)

)
= −

(
a0.a1

1 . . . a
p
1.f(a1

2 ⊗ . . .⊗ a
p
2) + (−1)p+1a0

1 . . . a
p−1
1 .apf(a0

2 ⊗ . . .⊗ a
p−1
2 )

)
and this finishes the computation of ∂(f̂).

Clearly εf̂ = f ; so ε∗ is a split epimorphism. To check that f 7→ f̂ is multiplica-
tive is straightforward:

Let g : A⊗q → k be a cocycle and ĝ : A⊗q → A the cocycle with values in A
corresponding to g. We can check the following:

f̂ ^ g(a1 ⊗ . . .⊗ ap+q) = a1
1 . . . a

p+q
1 .(f ^ g)(a1

2 ⊗ . . .⊗ a
p+q
2 )

= a1
1 . . . a

p+q
1 .f(a1

2 ⊗ . . .⊗ a
p
2)g(ap+1

2 ⊗ . . .⊗ ap+q2 )

= (f̂ ^ ĝ)(a1 ⊗ . . .⊗ ap+q).

�

2. Brace operations

In this section we prove our main theorem, stating that the map H•(A, k) →
H•(A,A) is “compatible” with the brace operations, and as a consequence with the
Gerstenhaber bracket. Note that the map H•(A, k) → H•(A,A) is defined at the
standard complex level. Let us define Cp(A,M) := Hom(A⊗p,M).

Theorem 2.1. The image of the map C•(A, k) → C•(A,A) is stable under the
brace operation. Moreover, if f̂ and ĝ are the images in C•(A,A) of two elements
f and g belonging to C•(A, k), then f̂ ◦i ĝ = f̂ ◦i ĝ.

Proof. Let us recall the definition of the brace operations (see [3]). If F : A⊗p →M
and G : A⊗q → A and 1 ≤ i ≤ p, then F ◦i G : A⊗p+q−1 →M is defined by

(F ◦i G)(a1 ⊗ . . .⊗ ai ⊗ b1 ⊗ . . .⊗ bq ⊗ ai+1 ⊗ . . .⊗ ap)
= F (a1 ⊗ . . .⊗ ai ⊗G(b1 ⊗ . . .⊗ bq)⊗ ai+1 ⊗ . . .⊗ ap).

Assume now that f : A⊗p → k, g : A⊗q → k and F = f̂ and G = ĝ, namely

F (a1 ⊗ . . .⊗ ap) = a1
1 . . . a

p
1.f(a1

2 ⊗ . . .⊗ a
p
2)
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and similarly for G and g. Then (denoting (a⊗ b) by (a, b)),

(F ◦i G)(a1, . . . , ai, b1, . . . , bq, ai+1, . . . , ap)

= F
(
a1, . . . , ai, G(b1, . . . , bq), ai+1, . . . , ap

)
= F

(
a1, . . . , ai, b11 . . . b

q
1.g(b12, . . . , b

q
2), ai+1, . . . , ap

)
= a1

1 . . . a
i
1.b

1
1 . . . b

q
1.a

i+1
1 . . . ap1.f

(
a1

2, . . . , a
i
2, b

1
2 . . . b

q
2.g(b13, . . . , b

q
3), ai+1

2 , . . . , ap2
)

= f̂ ◦i G(a1, . . . , ai, b1, . . . , bq, ai+1, . . . , ap). �

Recall that the brace operations define a “composition” operation F ◦ G =∑p
i=1(−1)q(i−1)F ◦i G, where F ∈ Cp(A,A) and G ∈ Cq(A,A). The Gerstenhaber

bracket is defined as the commutator of this composition. So we have the desired
corollary:

Corollary 2.2. If A is a Hopf algebra, then H•(A, k) is a Gerstenhaber subalgebra
of H•(A,A).

Example 2.3. Let A be a Hopf algebra. Then Ext1
A(k, k) ∼= Der(A, k) = Prim(A∗),

where Prim(A∗) = {x ∈ A∗ such that m∗(x) = x⊗ 1 + 1 ⊗ x}. It is easy to check
that the Lie bracket given in the above theorem coincides with the commutator of
the convolution product, viewing Der(A, k) as a subset of A∗.

Example 2.4. LetG be a connected affine algebraic group and g := Ker(ε)/Ker(ε)2

its tangent Lie algebra. One has that HH•(O(G),O(G)) = Λ•O(G)Der(O(G)) ∼=
O(G) ⊗ Λ•g, where the Gerstenhaber structure here is the Schouten-Nijenhuis
bracket. Also Ext•O(G)(k, k) = Λ•g, and it is generated (as an algebra) in de-
gree one. So the bracket is determined by its values on Ext1

O(G)(k, k) = g, which is
the bracket of g as a Lie algebra. This G-algebra structure is also well known.

Consider H a finite-dimensional Hopf algebra and X = X(H) the algebra defined
by Cibils and Rosso (see [2]). We can prove, at least in the finite-dimensional case,
the conjecture of [11] that H•GS(H,H) is a Gerstenhaber algebra:

Corollary 2.5. Let H be a finite-dimensional Hopf algebra. Then H•GS(H,H) is
a Gerstenhaber algebra.

Proof. The isomorphism H•GS(H,H) ∼= Ext•X(H,H) was proved in [10].
Let A denote D(H), the Drinfeld double of H . One knows that X -mod ∼= A-mod

via M 7→M coH . Then Ext•X(H,H) ∼= Ext•A(HcoH , HcoH) = Ext•A(k, k), and this a
Gerstenhaber subalgebra of H•(A,A). �
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