Singular Integral Operators with Non-necessarily Bounded Kernels on Spaces of Homogeneous Type*

Roberto A. Macías
PEMA, CONICET, and Universidad Nacional del Litoral, 3000 Sante Fe, Argentina
Carlos Segovia
IAM, CONICET, and Universidad de Buenos Aires (FCEyN), Argentina
AND
José L. Torrea
Universidad Autónoma de Madrid, 28049 Madrid, Spain

INTRODUCTION

The purpose of this paper is twofold. First, we intend to clarify the relevance of conditions of the type considered in [A, DJS, MT] on the measure of coronas in the study of singular integral operators. The main result in this direction is given in Theorem (1.19), where we show that for a space of homogeneous type satisfying condition $\left(H_{\alpha}\right)$, see (1.5), a normalization can be given to satisfy condition (L_{α}), see (1.3). This result allows us to interpret $\left(H_{\alpha}\right)$ as a quantitative property ensuring that the order of the normalized space is at least equal to α. Examples show that, in general, α cannot be improved. An approximation of the identity of R. Coifman's type is obtained for normalized spaces of order α without restrictions on the measure of the whole space X or the existence of atoms for the measure. This allows us to get rid of the condition $\left(H_{\alpha}\right)$ in the results of Chapter II.

Second, in Chapter II we study singular integral operators with conditions on the associated kernel which generalize those of [A, DJS, MT], allowing the kernel to be unbounded, see [KW].

The conditions we assume on the kernel are stated in (2.3), (2.4), (2.5),

[^0]and (2.6). They are inspired in the L^{r}-Dini condition of [KW]. The main result of the paper is to show that T is weakly bounded if and only if $T \psi$ is a function given by an explicit formula involving the kernel associated to T and $T 1=g$, see Theorem (2.27). By a systematic use of this formula we obtain the following results:
If T is a weakly bounded singular integral operator and $T 1$ belongs to B.M.O., then
(a) The kernel associated to T is equal to zero if and only if there exist $h(x) \in L^{\infty}$ and $T f(x)=h(x) f(x)$ (see (2.31).
(b) T maps Lipschitz functions into bounded Lipschitz functions if and only if $T 1=0$ (see (2.32)). For related results see [L].
(c) If $T^{*} 1$ also belongs to B.M.O., then T satisfies estimates of the type given in Lemma 2.3 of [DJS], which allow the L^{2} theory to develop (see (2.34)).
Finally, we give an application to operators defined by principal value integrals, see (2.37), obtaining a priori Lipschitz estimates for some parabolic partial differential equations.

I. Geometry of Spaces of Homogeneous Type

We say that a real valued function $d(x, y)$ defined on $X \times X$ is a quasidistance on X if
(i) $d(x, y) \geqslant 0$ and $d(x, y)=0$ if and only if $x=y$,
(ii) $d(x, y)=d(y, x)$, and
(iii) $d(x, y) \leqslant K[d(x, z)+d(z, y)]$,
hold for every x, y, and z in X and K a finite constant. The set $\{y: d(x, y) \leqslant r\}$ is denoted by $B_{d}(x, r)$. This quasi-distance defined a uniform structure on X, the family $\{(x, y): d(x, y)<\varepsilon\}$ being a basis of the uniformity. Let μ be a positive measure on a σ-algebra of subsets of X which contains the open sets and the balls $B_{d}(x, r)$. We say that (X, d, μ) is a space of homogeneous type if there exists a finite constant A such that

$$
\begin{equation*}
\mu\left(B_{d}(x, 2 K r)\right) \leqslant A \mu\left(B_{d}(x, r)\right) \tag{1.2}
\end{equation*}
$$

holds for every $x \in X$ and $r>0$. It is known [MS1] that it is always possible to find a quasi-distance $d^{\prime}(x, y)$ equivalent to $d(x, y)$ and $0<\beta \leqslant 1$, such that

$$
\begin{equation*}
\left(L_{\beta}\right)\left|d^{\prime}(x, z)-d^{\prime}(y, z)\right| \leqslant C r^{1-\beta} d(x, y)^{\beta} \tag{1.3}
\end{equation*}
$$

holds for whenever $d^{\prime}(x, z)$ and $d^{\prime}(y, z)$ are smaller than or equal to r, with C a finite constant. Thus we can assume that $d(x, y)$ satisfies condition $\left(L_{\beta}\right)$ for some $0<\beta \leqslant 1$.

We say that a triple (X, d, μ) is a normalized space if there exist constants K_{1}, K_{2}, A_{1}, and A_{2} such that
(i) if $K_{1} \mu(\{x\}) \leqslant r \leqslant K_{2} \mu(X)$, then $A_{1} r \leqslant \mu\left(B_{d}(x, r)\right) \leqslant A_{2} r$,
(ii) if $r<K_{1} \mu(\{x\})$, then $B_{d}(x, r)=\{x\}$, and
(iii) if $r>K_{2} \mu(X)$, then $B_{d}(x, r)=X$.

These there conditions imply that (X, d, μ) is a space of homogeneous type.
Let (X, d, μ) be a space of homogeneous type, with its quasi-distance satisfying condition $\left(L_{\beta}\right)$. Then we shall say that this space satisfies the condition (H_{α}), $0<\alpha \leqslant 1$, if

$$
\begin{gather*}
\mu\left(B_{d}\left(x, r+r^{1-\beta} s^{\beta}\right)\right)-\mu\left(B_{u}\left(x, r-r^{1-\beta_{s} \beta}\right)\right) \\
\leqslant C \mu\left(B_{d}(x, r)\right)^{1-\alpha} \mu\left(B_{d}(x, s)\right)^{\alpha} \tag{1.5}
\end{gather*}
$$

holds for $0 \leqslant s \leqslant r$ and $x \in X$, with C a finite constant.
The main purpose of this chapter is to prove that in a space of homogeneous type satisfying condition $\left(H_{\alpha}\right)$, (1.5), a normalization can be found such that its quasi-distance satisfies condition (L_{α}), (1.4). Also, an approximation of the identity, made of Lipschitz functions of order α, of the type introduced by R. Coifman is given.
(1.6) Lemma. Let (X, d, μ) satisfy condition $\left(H_{\alpha}\right)$. Then either $\mu(\{x\})=0$ for every $x \in X$ or $\mu(\{x\})>0$ for every $x \in X$.

This result is proved in [MT]. We give a proof here for the sake of completeness.

Proof. Let us assume that there is a point $x \in X$ such that $\mu(\{x\})=0$. Let $y \in X, \quad y \neq x$. Then y belongs to $B_{d}\left(x, d(x, y)+d(x, y)^{1-\beta} s^{\beta}\right) \sim$ $B_{d}\left(x, d(x, y)-d(x, y)^{1-\beta} s^{\beta}\right)$, for every $s \leqslant d(x, y)$. By condition $\left(H_{\alpha}\right)$, we have

$$
\mu((\{y\})) \leqslant C \mu\left(B_{d}(x, d(x, y))\right)^{1-\alpha} \mu\left(B_{d}(x, s)\right)^{\alpha}
$$

Since $\lim _{s \rightarrow 0} \mu\left(B_{d}(x, s)\right)=\mu(\{x\})=0$, we get $\mu(\{y\})=0$.
Let (X, d, μ) be a space of homogeneous type and define

$$
\begin{equation*}
\delta(x, x)=0 \quad \text { and } \quad \text { if } x \neq y, \delta(x, y)=\mu\left(B_{d}(x, d(x, y))\right) . \tag{1.7}
\end{equation*}
$$

(1.8) Proposition. The function $\delta(x, y)$ satisfies
(i) $\delta(x, y) \geqslant 0$ and $\delta(x, y)=0 \quad$ if and only if $x=y$,
(ii) $\quad \delta(x, y) \leqslant A \delta(y, x), \quad$ and
(iii) $\delta(x, y) \leqslant A^{2}|\delta(x, z)+\delta(y, z)|$,
for every x, y, and z in X.

Proof. Part (i) is obvious. Let us consider (ii)'. If $v \in B_{d}(x, d(x, y))$, we have $d(v, \dot{y}) \leqslant K|d(v, x)+d(x, y)| \leqslant 2 K d(x, y)$; then $\delta(x, y)=$ $\mu\left(B_{d}(x, d(x, y))\right) \leqslant A\left(B_{d}(y, d(x, y))\right)=A \delta(y, x)$. Let us consider (iii). If $d(x, z) \leqslant d(z, y)$, we have that $u \in B_{d}(x, d(x, y))$ implies $d(u, y) \leqslant$ $K|d(u, x)+d(x, y)| \leqslant 2 K d(x, y)$ and since $d(x, y) \leqslant K|d(x, z)+d(z, y)| \leqslant$ $2 K d(z, y)$, it follows that $d(u, y) \leqslant(2 K)^{2} d(z, y)$. Thus,

$$
\delta(x, y) \leqslant \mu\left(B_{d}(x, d(x, y)) \leqslant A^{2} \mu\left(B_{d}(y, d(y, z))\right)=A^{2} \delta(y, z) .\right.
$$

Analogously, if $d(z, y) \leqslant d(x, z)$ it turns out that $\delta(x, y) \leqslant A^{2} \delta(x, z)$. This proves part (iii).

We observe that $\delta(x, y)$ does not necessarily satisfy condition (ii) of (1.1), but it does satisfy (ii) of (1.8). We shall call this $\delta(x, y)$ the non-necessarily symmetric quasi-distance associated to (X, d, μ). We denote by $B_{\delta}(x, r)$ the set $\{y: \delta(x, y) \leqslant r\}$.
(1.9) Proposition. Let (X, d, μ) be a space of homogeneous type and $\delta(x, y)$ the non-necessarily symmetric quasi-distance associated to (X, d, μ). Then the following properties hold:
(i) if $0<r<\mu(\{x\})$, then $B_{\delta}(x, r)=\{x\}$,
(ii) if $\mu(\{x\}) \leqslant r$, then $\mu\left(B_{\delta}(x, r)\right) \leqslant r$,
(iii) if $\mu(X) \leqslant r$, then $B_{\delta}(x, r)=X$, and
(iv) if $r<\mu(X)$, then $A^{-2} r \leqslant \mu\left(B_{\delta}(x, r)\right)$.

Proof. Part (i): if $y \in B_{\delta}(x, r)$ and $y \neq x$, then $r<\mu(\{x\}) \leqslant$ $\mu(B(x, d(x, y)))=\delta(x, y) \leqslant r$, which is a contradiction. Then $B_{\delta}(x, r)=$ ($\{x\}$). Part (ii): if $\mu(\{x\}) \leqslant r$, since

$$
B_{\delta}(x, r)=\bigcup\left\{B_{d}(x, d(x, y)): y \in B_{\delta}(x, r)\right\}
$$

it turns out that $\left.\mu\left(B_{\delta}(x, r)\right)\right) \leqslant r$. Part (iii): let $y \in X$; since $\mu\left(B_{d}(x, d(x, y)) \leqslant \mu(X) \leqslant r\right.$, it follows that $y \in B_{\delta}(x, r)$. Part (iv): assume
that $B_{\delta}(x, r)=\{x\}$. This implies that for every $y \neq x, \mu\left(B_{d}(x, d(x, y))\right)>r$. Let $\left\{y_{n}\right\}$ be a sequence of points of X such that

$$
m=\lim d\left(x, y_{n}\right)=\inf \{d(x, y): y \in X, y \neq x\} .
$$

If this limit m is equal to zero, we have $\mu(\{x\})=\lim \mu\left(B\left(x, d\left(x, y_{n}\right)\right)\right) \geqslant r$ and therefore $\mu\left(B_{\delta}(x, r)\right)=\mu(\{x\}) \geqslant r>A^{-2} r$. If m is positive, then $B_{\delta}(x, 3 m / 4)=\{x\}$ and $\mu\left(B_{d}(x, 2 k 3 m / 4)\right)>r$. Thus,

$$
r<A \mu\left(B_{d}(x, 3 m / 4)\right)=A \mu(\{x\})=A \mu\left(B_{\delta}(x, r)\right),
$$

verifying (iv). Let us assume now that $B_{\delta}(x, r) \neq\{x\}$. Let $s=\sup \{d(x, y)$: $\left.x \neq y, y \in B_{\delta}(x, r)\right\}$. Then $s>0$, and moreover s is finite, since otherwise $B_{\delta}(x, r)=X$ and then $r<\mu(X)=\mu\left(B_{\delta}(x, r)\right) \leqslant r$, which is a contradiction. Let $t<s<2 t$. If $A^{-2} r>\mu\left(B_{\delta}(x, r)\right)$, we shall show that for every positive integer $n, B_{d}\left(x,(2 K)^{n} t\right)=B_{d}(x, s)$ holds. For $n=1$, we have

$$
\mu\left(B_{d}(x, 2 K t)\right) \leqslant A \mu\left(B_{d}(x, t)\right) \leqslant A \mu\left(B_{\delta}(x, r)\right) \leqslant A^{-1} r<r .
$$

If there were $y \in B_{d}(x, 2 K t) \sim B_{d}(x, s)$, there would exist $y \in B_{\delta}(x, r)$ and $d(x, y)>s$, contradicting the definition of s. For $n+1$, we have

$$
\begin{aligned}
\mu\left(B_{d}\left(x,(2 K)^{n+1} t\right)\right) & \leqslant A \mu\left(B_{d}\left(X,(2 K)^{n} t\right)\right)=A \mu\left(B_{d}(x, s)\right) \\
& \leqslant A \mu\left(B_{d}(x, 2 K t)\right) \leqslant A^{2} \mu\left(B_{d}(x, t)\right) \\
& \leqslant A^{2} \mu\left(B_{\delta}(x, r)\right)<r .
\end{aligned}
$$

Again, since $(2 K)^{n+1} t>s$, it follows that $B_{d}\left(x,(2 K)^{n+1} t\right)=B_{d}(x, s)$. Therefore, we have $B_{d}(x, s)=X$. From

$$
\begin{aligned}
r & <\mu(X)=\mu\left(B_{d}(x, s)\right)=\mu\left(B_{d}(x, 2 K t)\right) \leqslant A \mu\left(B_{d}(x, t)\right) \\
& \leqslant A \mu\left(B_{\delta}(x, r)\right),
\end{aligned}
$$

it follows that

$$
A^{-2} r<A^{-1} r \leqslant \mu\left(B_{\delta}(x, r)\right),
$$

which is a contradiction and (iv) is proved.
(1.10) Lemma. Let $K^{\prime}=(C+K)^{2 / \beta}$, where C is the constant in condition (L_{β}) of (1.3). Then, if $\left(X, d, \mu\right.$) saatisfies conditions $\left(L_{\beta}\right)$ and $\left(H_{\alpha}\right)$ of (1.3) and (1.5), respectively, we have

$$
\begin{aligned}
& \left|\mu\left(B_{d}\left(x, d\left(x^{\prime}, y\right)\right)\right)-\mu\left(B_{d}\left(x^{\prime}, d\left(x^{\prime}, y\right)\right)\right)\right| \\
& \quad \leqslant C^{\prime \prime} \mu\left(B_{d}\left(x, d\left(x^{\prime}, y\right)\right)\right)^{1-\alpha} \mu\left(B_{d}\left(x, d\left(x, x^{\prime}\right)\right)\right)^{\alpha},
\end{aligned}
$$

provided that $K^{\prime} d\left(x, x^{\prime}\right) \leqslant d\left(x^{\prime}, y\right)$.

Proof. Let us assume first that $\mu\left(B_{d}\left(x, d\left(x^{\prime}, y\right)\right)\right)$ is larger than $\mu\left(B_{d}\left(x^{\prime}, d\left(x^{\prime}, y\right)\right)\right.$). If $z \in B\left(x, d\left(x^{\prime}, y\right)\right)$, we have

$$
d\left(z, x^{\prime}\right) \leqslant K\left|d(z, x)+d\left(x, x^{\prime}\right)\right| \leqslant 2 K d\left(x^{\prime}, y\right) .
$$

Then, by condition (L_{β}) of (1.3),

$$
d\left(z, x^{\prime}\right) \leqslant d(z, x)+C(2 K)^{1-\beta} d\left(x^{\prime}, y\right)^{1-\beta} d\left(x, x^{\prime}\right)^{\beta},
$$

or

$$
d\left(z, x^{\prime}\right) \leqslant d\left(x^{\prime}, y\right)+d\left(x^{\prime}, y\right)^{1-\beta}\left(C^{1 / \beta}(2 K)^{(1-\beta) / \beta} d\left(x, x^{\prime}\right)\right)^{\beta} .
$$

Since $C^{1 / \beta}(2 K)^{(1-\beta) / \beta} d\left(x, x^{\prime}\right) \leqslant K^{\prime} d\left(x, x^{\prime}\right) \leqslant d\left(x^{\prime}, y\right)$, condition $\left(H_{\alpha}\right)$ implies

$$
\begin{aligned}
& \mu\left(B_{d}\left(x, d\left(x^{\prime}, y\right)\right)\right)-\mu\left(B_{d}\left(x^{\prime}, d\left(x^{\prime}, y\right)\right)\right) \\
& \quad \leqslant C^{\prime \prime} \mu\left(B_{d}\left(x^{\prime}, d\left(x^{\prime}, y\right)\right)\right)^{1-\alpha} \mu\left(B_{d}\left(x^{\prime}, d\left(x, x^{\prime}\right)\right)\right)^{\alpha} \\
& \quad \leqslant C^{\prime \prime} \mu\left(B_{d}\left(x, d\left(x^{\prime}, y\right)\right)\right)^{1-\beta} \mu\left(B_{d}\left(x, d\left(x, x^{\prime}\right)\right)\right)^{\alpha} .
\end{aligned}
$$

The case $\mu\left(B_{d}\left(x, d\left(x^{\prime}, y\right)\right)\right) \leqslant \mu\left(B_{d}\left(x^{\prime}, d\left(x^{\prime}, y\right)\right)\right)$ is similar and even simpler.
(1.11) Proposition. Let (X, d, μ) be a space of homogeneous type satisfying conditions $\left(L_{\beta}\right)$ and $\left(H_{\alpha}\right)$. Then, the non-necessarily symmetric quasi-distance $\delta(x, y)$ associated to the space satisfies
(i) $\left|\delta(x, y)-\delta\left(x^{\prime}, y\right)\right| \leqslant C r^{1-\alpha} \delta\left(x, x^{\prime}\right)^{\alpha}$, whenever $\delta(x, y)$ and $\delta\left(x^{\prime}, y\right)$ are less than or equal to r, and
(ii) for every $x \in X, \delta(x, y)$ is a continuous function of y.

Proof. We can assume that $d(x, y) \geqslant d\left(x^{\prime}, y\right)$. Let $r=[d(x, y)+$ $\left.d\left(x^{\prime}, y\right)\right] / 2$ and $s=\left[d(x, y)-d\left(x^{\prime}, y\right)\right]^{1 / \beta}$. $[d(x, y)+d(x, y)]^{1-1 / \beta} / 2$. It is easy to see that

$$
(s / r)^{\beta}=\left[d(x, y)-d\left(x^{\prime}, y\right)\right] /\left[d(x, y)-d\left(x^{\prime}, y\right)\right] \leqslant 1
$$

that is to say, $s \leqslant r$. Moreover,

$$
r+r^{1-\beta} s^{\beta}=d(x, y) \quad \text { and } \quad r-r^{i-\beta} s^{\beta}=d\left(x^{\prime}, y\right)
$$

By condition (L_{β}), we have

$$
d(x, y)-d\left(x^{\prime}, y\right) \leqslant C d(x, y)^{1-\beta} d\left(x, x^{\prime}\right)^{\beta} ;
$$

therefore, $s \leqslant C d\left(x, x^{\prime}\right)$. It is also evident that $r \leqslant d(x, y)$. Applying condition (H_{α}) with the given r,

$$
\begin{aligned}
& \mu\left(B_{d}(x, d(x, y))\right)-\mu\left(B_{d}\left(x, d\left(x^{\prime}, y\right)\right)\right. \\
& \quad \leqslant C \mu\left(B_{d}(x, d(x, y))\right)^{1-\alpha} \mu\left(B_{d}\left(x, d\left(x, x^{\prime}\right)\right)\right)^{\alpha}
\end{aligned}
$$

On the other hand, by Lemma (1.10), it follows that if $K^{\prime} d\left(x, x^{\prime}\right)^{\beta}<$ $d\left(x^{\prime}, y\right)^{\beta}$,

$$
\begin{aligned}
& \left|\mu\left(B_{d}\left(x, d\left(x^{\prime}, y\right)\right)\right)-\mu\left(B_{d}\left(x^{\prime}, d\left(x^{\prime}, y\right)\right)\right)\right| \\
& \quad \leqslant C \mu\left(B_{d}\left(x, d\left(x^{\prime}, y\right)\right)\right)^{1-\alpha} \mu\left(B_{d}\left(x, d\left(x, x^{\prime}\right)\right)\right)^{\alpha} .
\end{aligned}
$$

If we assume that $K^{\prime} d\left(x, x^{\prime}\right)^{\beta} \geqslant d\left(x^{\prime}, y\right)^{\beta}$, we have

$$
\begin{aligned}
& \mu\left(B_{d}\left(x, d\left(x^{\prime}, y\right)\right)\right) \\
& \quad=\mu\left(B_{d}\left(x, d\left(x^{\prime}, y\right)\right)\right)^{1-\alpha} \mu\left(B_{d}\left(x, d\left(x^{\prime}, y\right)\right)\right)^{\alpha} \\
& \quad \leqslant C \mu\left(B_{d}(x, d(x, y))\right)^{1-\alpha} \mu\left(B_{d}\left(x, d\left(x, x^{\prime}\right)\right)\right)^{\alpha} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \mu\left(B_{d}\left(x^{\prime}, d\left(x^{\prime}, y\right)\right)\right) \\
& \quad=\mu\left(B_{d}\left(x^{\prime}, d\left(x^{\prime}, y\right)\right)\right)^{1-\alpha} \mu\left(B_{d}\left(x^{\prime}, d\left(x^{\prime}, y\right)\right)\right)^{\alpha} \\
& \quad \leqslant C \mu\left(B_{d}\left(x^{\prime}, d\left(x^{\prime}, y\right)\right)\right)^{1-\alpha} \mu\left(B_{d}\left(x^{\prime}, d\left(x, x^{\prime}\right)\right)\right)^{\alpha} .
\end{aligned}
$$

Let $u \in B_{d}\left(x^{\prime}, d\left(x^{\prime}, y\right)\right)$; we have

$$
d(u, y) \leqslant K\left[d\left(u, x^{\prime}\right)+d\left(x^{\prime}, y\right)\right] \leqslant 2 K d\left(x^{\prime}, y\right) \leqslant 2 K d(x, y),
$$

showing that $B_{d}\left(x^{\prime}, d\left(x^{\prime}, y\right) \subset B_{d}(y, 2 K d(x, y))\right.$. Therefore,

$$
\mu\left(B_{d}\left(x^{\prime}, d\left(x^{\prime}, y\right)\right)\right) \leqslant A \mu\left(B_{d}(y, d(x, y))\right) \leqslant C^{\prime} \mu\left(B_{d}(x, d(x, y))\right)^{x} .
$$

Thus, we have

$$
\mu\left(B_{d}\left(x^{\prime}, d\left(x^{\prime}, y\right)\right) \leqslant C^{\prime \prime} \mu\left(B_{d}(x, d(x, y))\right)^{1-\alpha} \mu\left(B_{d}\left(x, d\left(x, x^{\prime}\right)\right)\right)^{\alpha} .\right.
$$

Collecting results, it follows that

$$
\begin{aligned}
\left|\delta(x, y)-\delta\left(x^{\prime}, y\right)\right| \leqslant & \left|\mu\left(B_{d}(x, d(x, y))\right)-\mu\left(B_{d}\left(x, d\left(x^{\prime}, y\right)\right)\right)\right| \\
& +\left|\mu\left(B_{d}\left(x, d\left(x^{\prime}, y\right)\right)\right)-\mu\left(B_{d}\left(x^{\prime}, d\left(x^{\prime}, y\right)\right)\right)\right| \\
\leqslant & C \mu\left(B_{d}\left(x, d\left(x^{\prime}, y\right)\right)\right)^{1-\alpha} \mu\left(B_{d}\left(x, d\left(x, x^{\prime}\right)\right)\right)^{\alpha} \\
= & C \delta(x, y)^{1-\alpha} \delta\left(x, x^{\prime}\right)^{\alpha},
\end{aligned}
$$

which implies (i).

As for part (ii), by virtue of Lemma (1.6) we have two possible cases. First, for every $x \in X, \mu(\{x\})>0$. In this case X is a discrete space for both d and δ and therefore, every function on X is continuous. The second case is when $\mu(\{x\})=0$. Then, if $d(x, y)>d\left(x, y^{\prime}\right)$, choosing r and s as

$$
r+r^{1-\beta_{s} \beta}=d(x, y), \quad \text { and } \quad r-r^{1-\beta_{S} \beta}=d\left(x, y^{\prime}\right),
$$

we get

$$
\begin{aligned}
& r=\left[d(x, y)+d\left(x, y^{\prime}\right)\right] / 2 \\
& s=\left\{\left(\left[d(x, y)-d\left(x, y^{\prime}\right)\right] / 2\left(\left[d(x, y)+d\left(x, y^{\prime}\right)\right] / 2\right)^{1-\beta}\right\}^{1 / \beta},\right.
\end{aligned}
$$

$s \leqslant r$, and $r \leqslant d(x, y)$. Thus, by condition $\left(H_{\alpha}\right)$, it follows that

$$
\left|\delta(x, y)-\delta\left(x, y^{\prime}\right)\right| \leqslant C \mu\left(B_{d}(x, d(x, y))\right)^{1-\alpha} \mu\left(B_{d}(x, s)\right)^{x} .
$$

Since y^{\prime} tending to y implies that s tends to zero and $\lim \mu\left(B_{d}(x, s)\right)=$ $\mu(\{x\})=0$, the continuity of $\delta(x, y)$ is proved.

In the rest of this chapter, (X, δ, μ) will be a triple satisfying the following conditions:
(i) $0 \leqslant \delta(x, y)<\infty$ and $\delta(x, y)=0 \quad$ if and only if $x=y$
(ii) $\delta(x, y) \leqslant K \delta(y, x)$,
(iii) $\delta(x, y) \leqslant K[\delta(x, z)+\delta(z, y)]$,
(iv) if $K_{1} \mu(\{x\}) \leqslant r \leqslant K_{2} \mu(X)$, then

$$
\begin{equation*}
r A_{1} \leqslant \mu\left(B_{\delta}(x, r)\right) \leqslant r A_{2}, \tag{1.12}
\end{equation*}
$$

(v) if $r<K_{1} \mu(\{x\})$, then $B_{\delta}(x, r)=\{x\}$ and
(vi) if $r>K_{2} \mu(X)$, then $B_{\delta}(x, r)=X$,
where K, K_{1}, K_{2}, A_{1}, and A_{2} are constants. These conditions imply the existence of a constant satisfying (1.2), i.e., $\mu\left(B_{\delta}(x, 2 K r)\right) \leqslant A \mu\left(B_{\delta}(x, r)\right)$. We shall call a triple (X, δ, μ) satisfying conditions (1.12) a non-necessarily symmetric normalized spacc. The only difference between this and a normalized space is that instead of assuming δ to be symmetric, we assume that (ii) of (1.12) holds with K non-necessarily equal to one.
(1.13) Theorem (Approximation of the Identity). Let (X, δ, μ) be a non-necessarily symmetric normalized space of order α, that is to say

$$
\begin{equation*}
\left|\delta(x, y)-\delta\left(x^{\prime}, y\right)\right| \leqslant C r^{1-\alpha} \delta\left(x, x^{\prime}\right)^{\alpha} \tag{1.14}
\end{equation*}
$$

holds for an $\alpha, 0<\alpha \leqslant 1$, whenever $\delta(x, y)<r$ and $\delta\left(x^{\prime}, y\right)<r$. If $\delta(x, y)$ is
non-symmetric, we assume that $\delta(x, y)$ is a continuous function of y. Then, for every $t, 0<t<C \mu(X)$, there is a function $s_{t}(x, y)$ satisfying
(i) $0 \leqslant s_{t}(x, y) \leqslant C\left[\mu\left(\boldsymbol{B}_{\delta}(x, t)\right)^{-1}+\mu\left(\boldsymbol{B}_{\delta}(y, t)\right)^{-1}\right]$,
(ii) if $\delta(x, y)<C^{-1} t$,

$$
\text { then } s_{t}(x, y) \geqslant C^{-1}\left[\mu\left(B_{\delta}(x, t)\right)^{-1}+\mu\left(B_{\delta}(y, t)\right)^{-1}\right] \text {, }
$$

(iii) $s_{t}(x, y)=s_{t}(y, x)$
(iv) $\operatorname{supp} s_{t} \subset\{(x, y): \delta(x, y)<C t\}$
(v) $\left|s_{t}(x, y)-s_{t}\left(x^{\prime}, y\right)\right|$

$$
\leqslant C \delta\left(x, x^{\prime}\right)^{\alpha}\left[\mu\left(B_{\delta}(x, t)\right)^{-1}+\mu\left(B_{\delta}\left(x^{\prime}, t\right)\right)^{-1}\right]^{1+\alpha}
$$

(vi) $\int s_{t}(x, y) d \mu(y)=1$,
where C is a finite constant. If necessary, C can he chosen as large as desired.
In order to prove this theorem, we shall need some lemmas.
Let $h(t)$ be a C^{∞} function defined on $\left.\mid 0, \infty\right)$ that satisfies $h(t)=1$ if $0 \leqslant t \leqslant 1, h(t)=0$ if $t \geqslant A$, and $0 \leqslant h(t) \leqslant 1$ for every $t \geqslant 0$.
(1.15) Lemмa. If $u_{t}(x, y)=h(\delta(x, y) / t)$, then

$$
\left|u_{t}(x, y)-u_{t}\left(x^{\prime}, y\right)\right| \leqslant C \delta\left(x, x^{\prime}\right)^{\alpha}\left[\mu\left(B_{\delta}(x, t)\right)^{-1}+\left(B_{\delta}\left(x^{\prime}, t\right)\right)^{-1}\right\}^{\alpha} .
$$

Proof. Let $\delta(x, y) \leqslant 2 K A t$ and $\delta\left(x^{\prime}, y\right) \leqslant 2 K A t$. Then, by (1.14), we have

$$
\left|u_{t}(x, y)-u_{t}\left(x^{\prime}, y\right)\right| \leqslant\left\|h^{\prime}\right\|_{\infty}\left|\delta(x, y)-\delta\left(x^{\prime}, y\right)\right| / t \leqslant C\left(\delta\left(x, x^{\prime}\right) / t\right)^{\alpha} .
$$

If $\delta(x, y)>2 K A t$ and $\delta\left(x^{\prime}, y\right) \leqslant A t$, then

$$
2 K A t<\delta(x, y) \leqslant K\left(\delta\left(x, x^{\prime}\right)+\delta\left(x^{\prime}, y\right)\right) \leqslant K \delta\left(x, x^{\prime}\right)+K A t ;
$$

thus, $t \leqslant A t \leqslant \delta\left(x, x^{\prime}\right)$. Therefore

$$
\left|u_{t}(x, y)-u_{t}\left(x^{\prime}, y\right)\right|=1 \leqslant\left(\delta\left(x, x^{\prime}\right) / t\right)^{\alpha} .
$$

The other possible cases are trivial. Now, if $K_{2} \mu(X) \geqslant t \geqslant$ $\min \left(K_{1} A^{-1} \mu(\{x\}), K_{1} A^{-1} \mu\left(\left\{x^{\prime}\right\}\right)\right)$ then

$$
\left|u_{t}(x, y)-u_{t}\left(x^{\prime}, y\right)\right| \leqslant C^{\prime} \delta\left(x, x^{\prime}\right)^{\alpha}\left[\mu\left(B_{\delta}(x, t)\right)^{-1}+\mu\left(B_{\delta}\left(x^{\prime}, t\right)\right)^{-1}\right]^{\alpha} .
$$

If $t<\min \left(K_{1} A^{-1} \mu(\{x\}), K_{1} A^{-1} \mu\left(\left\{x^{\prime}\right\}\right)\right.$), then $B_{\delta}(x, t)=\{x\}, B_{\delta}\left(x^{\prime}, t\right)=$ $\left\{x^{\prime}\right\}$, and

$$
\begin{array}{ccc}
u_{t}(x, y)=1 \text { if } x=y & \text { and } & u_{t}(x, y)=0 \text { if } x \neq y, \\
u_{t}\left(x^{\prime}, y\right)=1 \text { if } x^{\prime}=y & \text { and } & u_{t}\left(x^{\prime}, y\right)=0 \text { if } x \neq y .
\end{array}
$$

Assume $x \neq x^{\prime}$. Then $K_{1} \mu(\{x\}) \leqslant \delta\left(x, x^{\prime}\right)$ and $K_{1} \mu(\{x\}) \leqslant \delta\left(x^{\prime}, x\right)<$ $K \delta\left(x, x^{\prime}\right)$, yielding

$$
\begin{aligned}
\left|u_{t}(x, y)-u_{t}\left(x^{\prime}, y\right)\right| & \leqslant 1 \leqslant C \delta\left(x, x^{\prime}\right)^{\alpha}\left[\mu(\{x\})^{-1}+\mu\left(\left\{x^{\prime}\right\}\right)^{-1}\right]^{\alpha} \\
& \leqslant C^{\prime} \delta\left(x, x^{\prime}\right)^{\alpha}\left[\mu\left(B_{\delta}(x, t)\right)^{-1}+\mu\left(B_{\delta}\left(x^{\prime}, t\right)\right)^{-1}\right]^{\alpha}
\end{aligned}
$$

(1.16) Lemma. Let

$$
m_{t}(x)=\int u_{t}(x, y) d \mu(y)
$$

Then $m_{t}(x)$ is well defined and
(i) $\left|m_{t}(x)-m_{t}\left(x^{\prime}\right)\right| \leqslant C \delta\left(x, x^{\prime}\right)^{\alpha}\left[\mu\left(B_{\delta}(x, t)\right)^{-1}+\mu\left(B_{\delta}\left(x^{\prime}, t\right)\right)^{-1}\right]^{\alpha}$

$$
\cdot\left[\mu\left(B_{\delta}(x, t)\right)+\mu\left(B_{\delta}\left(x^{\prime}, t\right)\right]\right.
$$

moreover,
(ii) $\mu\left(B_{\delta}(x, t)\right) \leqslant m_{t}(x) \leqslant \mu\left(B_{\delta}(x, A t)\right)$.

Proof. The function $m_{t}(x)$ is well defined since we assume that $\delta(x, y)$ is a continuous function of y. On the other hand, by Lemma (1.15), we have

$$
\begin{aligned}
\left|m_{t}(x)-m_{t}\left(x^{\prime}\right)\right| \leqslant & \int\left|u_{t}(x, y)-u_{t}\left(x^{\prime}, y\right)\right| d \mu(y) \\
\leqslant & C^{\prime} \delta\left(x, x^{\prime}\right)^{\alpha}\left[\mu\left(B_{\delta}(x, t)\right)^{-1}+\left(\mu\left(B_{\delta}\left(x^{\prime}, t\right)\right)^{-1}\right]^{\alpha}\right. \\
& \times\left[\mu\left(B_{\delta}(x, t)\right)+\mu\left(B_{\delta}\left(x^{\prime}, t\right)\right)\right]
\end{aligned}
$$

As for (ii), since $u_{t}(x, y)=1$ if $y \in B_{\delta}(x, t)$ and $u_{t}(x, y)=0$ if $y \notin B(x, t)$, (ii) follows.
(1.17) Lemma. Let

$$
v_{t}(x, y)=m_{t}(x)^{-1} u_{t}(x, y)
$$

Then,
(i) $\left|v_{t}(x, y)-v_{t}\left(x^{\prime}, y\right)\right|$

$$
\leqslant C \delta\left(x, x^{\prime}\right)^{\alpha}\left[\mu\left(B_{\delta}(x, t)\right)^{-1}+\mu\left(B_{\delta}\left(x^{\prime}, t\right)\right)^{-1}\right]^{1+\alpha}
$$

(ii) $\int v_{t}(x, y) d \mu(y)=1, \quad$ and
(iii) $C^{-1} \leqslant \int v_{t}(x, y) d \mu(x) \leqslant C$,
where C is a finite constant.

Proof. We can assume that $m_{t}\left(x^{\prime}\right) \leqslant m_{t}(x)$. Then

$$
\begin{aligned}
v_{t}(x, y)-v_{t}\left(x^{\prime}, y\right)= & m_{t}(x)^{-1}\left[u_{t}(x, y)-u_{t}\left(x^{\prime}, y\right)\right] \\
& +u_{t}\left(x^{\prime}, y\right)\left[m_{t}\left(x^{\prime}\right)-m_{t}(x)\right] m_{t}(x)^{-1} m_{t}\left(x^{\prime}\right)^{-1}
\end{aligned}
$$

By Lemmas (1.15) and (1.16), it follows that

$$
\left|v_{t}(x, y)-v_{t}\left(x^{\prime}, y\right)\right| \leqslant C^{\prime} \delta\left(x, x^{\prime}\right)^{\alpha}\left[\mu\left(B_{\delta}(x, t)\right)^{-1}+\mu\left(B_{\delta}\left(x^{\prime}, t\right)\right)^{-1}\right]^{1+\alpha}
$$

As for (ii), it is apparent from the definition of $v_{t}(x, y)$. In order to prove (iii), we observe that

$$
C^{-1} m_{t}(y) \leqslant m_{t}(x) \leqslant C m_{t}(y)
$$

for $x \in B_{\delta}(y, A t)$. This implies (iii).
Proof of Theorem (1.13). Let

$$
w(z)=\left(\int v_{k}(x, z) d \mu(x)\right)^{-1}
$$

We define

$$
s_{t}(x, y)=\int v_{t}(x, z) w(z) v_{t}(y, z) d \mu(z)
$$

Part (i) By definition of v_{t} and from part (iii) of Lemma (1.17), we get

$$
\begin{aligned}
0 & \leqslant s_{t}(x, y) \leqslant\left(m_{t}(x)^{-1} m_{t}(y)^{-1}\left[\mu\left(B_{\delta}(x, t)\right)+\mu\left(B_{\delta}(y, t)\right)\right]\right. \\
& \leqslant C\left[\mu(B(x, t))^{-1}+\mu\left(B_{\delta}(y, t)\right)^{-1}\right] .
\end{aligned}
$$

Part (ii). If $\delta(x, z)<C^{-1} t$ and $\delta(x, y)<C^{-1} t$, then $\delta(y, z) \leqslant$ $K(\delta(y, x)+\delta(x, z)) \leqslant 2 K A C^{-1} t<t$, if C is chosen to be $2 K A<C$. Then

$$
\begin{aligned}
s_{t}(x, y) & \geqslant C^{\prime} m_{t}(x)^{-1} m_{t}\left((y)\left[\mu\left(B_{\delta}(x, t)\right)+\mu\left(B_{\delta}(y, t)\right)\right]\right. \\
& \geqslant C^{-1}\left[\mu\left(B_{\delta}(x, t)\right)^{-1}+\mu\left(B_{\delta}(y, t)\right)^{-1}\right] .
\end{aligned}
$$

Part (iii). follows from the definition of $s_{t}(x, y)$.
Part (iv). If $s_{t}(x, y)>0$, there exists z such that $\delta(x, z)<A t$ and $\delta(y, z)<A t$, therefore $\delta(x, y) \leqslant C t$.

Part (v). By Lemma (1.17) we have

$$
\begin{aligned}
\left|s_{t}(x, y)-s_{t}\left(x^{\prime}, y\right)\right| & \leqslant \int\left|v_{t}(x, z)-v_{t}\left(x^{\prime}, z\right)\right| w(z) v_{t}(y, z) d \mu(z) \\
& \leqslant C \delta\left(x, x^{\prime}\right)^{\alpha}\left[\mu\left(B_{\delta}(x, t)\right)^{-1}+\mu\left(B_{\delta}\left(x^{\prime}, t\right)\right)^{-1}\right]^{1+\alpha}
\end{aligned}
$$

Part (vi). By Lemma (1.7) we have

$$
\begin{aligned}
\int s_{t}(x, y) d \mu(y) & =\int v_{t}(x, z) w(z)\left(\int v_{t}(y, z) d \mu(y)\right) d \mu(z) \\
& =\int v_{t}(x, z) d \mu(z)=1 .
\end{aligned}
$$

(1.18) Theorem. If (X, δ, μ) is a non-necessarily symmetric normalized space of order α, then there exists δ^{\prime}, symmetric and equivalent to δ, such that $\left(X, \delta^{\prime}, \mu\right)$ is a normalized space of order α, that is to say, it satisfies conditions (1.4) and (L_{α}).
Proof. Let C be the constant of Theorem (1.13). If $x \neq y$, let i be the integer such that $c A^{-i-1}<\delta(x, y) \leqslant C A^{-i}$. Let p be the integer satisfying

$$
C^{-1} A^{-p-2}<K_{2} \mu(X) \leqslant C^{-1} A^{-p-1},
$$

and let n be the positive integer satisfying

$$
C^{2} A^{-n}<1 \leqslant C^{2} A^{-n+1} .
$$

Then, if $k \leqslant i$, we have

$$
C A^{-k} \geqslant C A^{-i} \geqslant \delta(x, y) \geqslant K_{1} \mu(\{x\}) ;
$$

thus, $\mu\left(B_{\delta}\left(x, A^{-i}\right)\right) \approx \mu\left(B_{\delta}\left(x, C A^{-i}\right)\right) \approx A^{-i}$. On the other hand, we have

$$
C A^{-i-1}<\delta(x, y) \leqslant K_{2} \mu(X) \leqslant C^{-1} A^{-p-1},
$$

therefore,

$$
1<C^{2} A^{-n+1}<A^{i-p-n},
$$

thus, $i \geqslant p+n$.
Moreover,

$$
\delta(x, y) \leqslant C A^{-i}=C^{2} A^{-n} C^{-1} A^{-i-n}<C^{-1} A^{-(i-n)}
$$

and if $k \geqslant i+1$, then

$$
\delta(x, y)>C A^{-i-1} \geqslant C A^{-k}
$$

We have that

$$
s(x, y)=\sum_{k=p}^{s} s_{A^{-k}}(x, y)
$$

satisfies

$$
s(x, y)=\sum_{k=p}^{i} s_{A^{-k}}(x, y) \leqslant C^{\prime} \sum_{k=p}^{i} A^{k} \leqslant C^{\prime \prime} A^{i} \leqslant C^{\prime \prime \prime} \delta(x, y)^{-1}
$$

and

$$
s(x, y) \geqslant s_{A^{-(i-n)}}(x, y) \geqslant C A^{i} \geqslant C \delta(x, y)^{-1} .
$$

Next, we estimate $\left|s(x, y)-s\left(x^{\prime}, y\right)\right|$. We can assume that $0<\delta(x, y) \leqslant$ $\delta\left(x^{\prime}, y\right)$. Let m be an integer satisfying $A^{m} \geqslant 2 K$. Then, if $A^{m} \delta(x, y) \leqslant$ $\delta\left(x^{\prime}, y\right)$, we have

$$
A^{m} \delta(x, y) \leqslant \delta\left(x^{\prime}, y\right) \leqslant K \delta\left(x^{\prime}, x\right)+K \delta(x, y)
$$

which implies $\delta\left(x^{\prime}, y\right) / 2 \leqslant K \delta\left(x, x^{\prime}\right)$. Then

$$
\left|s(x, y)-s\left(x^{\prime}, y\right)\right| \leqslant C^{\prime} \delta(x, y)^{-1} \leqslant C^{\prime \prime} \frac{\delta\left(x^{\prime}, x\right)}{\delta(x, y) \delta\left(x^{\prime}, y\right)^{2}}
$$

If $\delta(x, y) \leqslant \delta\left(x^{\prime}, y\right) \leqslant A^{m} \delta(x, y) \leqslant C A^{m-i+1}$, and since for $k>i, C A^{-k} \leqslant$ $C A^{-i-1}<\delta(x, y) \leqslant \delta\left(x^{\prime}, y\right)$, we have $s_{A^{-k}}(x, y)=s_{A^{-k}}\left(x^{\prime}, y\right)=0$; thus

$$
\left|s(x, y)-s\left(x^{\prime}, y\right)\right| \leqslant \sum_{k=p}^{i}\left|s_{A^{-k}}(x, y)-s_{A^{-k}}\left(x^{\prime}, y\right)\right|
$$

and by Theorem (1.13), we get that

$$
\begin{aligned}
\left|s(x, y)-s\left(x^{\prime}, y\right)\right| & \leqslant C^{\prime} \delta\left(x, x^{\prime}\right)^{\alpha} \sum_{k=p}^{i} A^{k(1+\alpha)} \\
& \leqslant C^{\prime \prime} A^{i(1+\alpha)} \delta(x, y)^{\alpha} \leqslant C^{\prime \prime \prime} \delta\left(x^{\prime}, y\right)^{-(1+\alpha)} \delta\left(x, x^{\prime}\right)^{\alpha}
\end{aligned}
$$

Now, let us define

$$
\begin{aligned}
\delta^{\prime}(x, x) & =0 \quad \text { and } \\
\delta(x, y) & =s(x, y)^{-1} \quad \text { for } \quad x \neq y
\end{aligned}
$$

We have already shown that there exists a constant $C>0$ such that

$$
C^{-1} \delta(x, y)<\delta^{\prime}(x, y) \leqslant C \delta(x, y)
$$

Let us estimate $\left|\delta^{\prime}(x, y)-\delta^{\prime}\left(x^{\prime}, y\right)\right|$. If $x=y$, then

$$
\left|\delta^{\prime}(x, x)-\delta^{\prime}\left(x^{\prime}, x\right)\right| \leqslant C r^{1-\alpha} \delta\left(x, x^{\prime}\right)^{\alpha}
$$

if $\delta\left(x, x^{\prime}\right)<r$. Analogously for $x^{\prime}=y$. Thus, we can assume that $x \neq x^{\prime}$, $y \neq x$, and $y \neq x^{\prime}$. Then

$$
\left|\delta^{\prime}(x, y)-\delta^{\prime}\left(x^{\prime}, y\right)\right| \leqslant C^{\prime}\left|s(x, y)-s\left(x^{\prime}, y\right)\right| \delta^{\prime}(x, y) \delta^{\prime}\left(x^{\prime}, y\right)
$$

which, by previous estimates on $s(x, y)$, is smaller than or equal to

$$
C^{\prime \prime} \frac{\delta\left(x, x^{\prime}\right)}{\delta(x, y) \delta\left(x^{\prime}, y\right)^{\alpha}} \delta^{\prime}(x, y) \delta\left(x^{\prime}, y\right) \leqslant C^{\prime \prime \prime} r^{1-\alpha} \delta\left(x, x^{\prime}\right)^{\alpha}
$$

if $\delta(x, y) \leqslant \delta\left(x^{\prime}, y\right) \leqslant r$. This ends the proof of the theorem.
(1.19) Theorem. Let (X, d, μ) be a space of homogeneous type satisfying conditions $\left(L_{\beta}\right)$ and $\left(H_{\alpha}\right)$, Then a normalization of order α can be found for this space.

Proof. The normalization is given by the quasi-distance $\delta^{\prime}(x, y)$ of Theorem (1.18), where $\delta(x, y)$ is the non-necessarily symmetric quasidistance associated to (X, d, μ) in (1.7). Propositions (1.9) and (1.11) and Theorem (1.18) show that $\left(X, \delta^{\prime}, \mu\right)$ is a normalized space of order α.
(1.20) Proposition. Let f be a Lipschitz function of order $\eta \leqslant \alpha$, with respect to the quasi-distance δ, supported in $B_{\delta}\left(x_{0}, r\right)$, and (X, δ, μ) a normalized space of order α. Then if $0<\eta^{\prime}<\eta$, we have that the functions

$$
\left.f_{t}(x)=\int S_{t}(x, y) f / y\right) d \mu(y)
$$

for $t<K_{2} \mu(X)$, satisfy
(i) $\operatorname{supp} f_{t} \subset B\left(x_{0}, r+C^{\prime \prime} r^{1-\alpha}, t^{\alpha}\right), \quad$ if $t<r$,
(ii) $\left|f_{1}(x)-f_{i}\left(x^{\prime}\right)\right| \leqslant C^{\prime \prime} t^{-(1+\alpha)} \mu\left(B\left(x_{0}, r\right)\right)^{1+\eta} \delta\left(x, x^{\prime}\right)$.
(iii) $\left|\left(f_{r}(x)-f(x)\right)-\left(f_{t}\left(x^{\prime}\right)-f\left(x^{\prime}\right)\right)\right| \leqslant C(t) \delta\left(x, x^{\prime}\right)^{\eta}$, where $\lim _{t \rightarrow 0} C(t)=0$.

Proof. The support of $f_{t}(x)$ is contained in the set of point x such that there exists y satisfying $\delta(x, y)<C t$ and $\delta\left(x_{0}, y\right)<r$. Then $\mid \delta\left(x_{0}, x\right)-$ $\delta\left(x_{0}, y\right) \mid \leqslant C^{\prime}(t+r)^{1-\alpha} \delta(x, y)^{\alpha} \leqslant C^{\prime}(t+r)^{1-\alpha} t^{\alpha} \leqslant C^{\prime \prime} r^{1-\alpha} t^{\alpha}$.

Let us consider part (ii). We have

$$
\left|f_{t}(x)-f_{t}\left(x^{\prime}\right)\right| \leqslant \int\left|s_{t}(x, y)-s_{t}\left(x^{\prime}, y\right)\right||f(y)| d \mu(y)
$$

By Theorem (1.13), this is smaller than or equal to

$$
\begin{aligned}
& C \delta\left(x, x^{\prime}\right)^{\alpha}\left[\mu\left(B_{\delta}(x, t)\right)^{-1}+\mu\left(B_{\delta}\left(x^{\prime}, t\right)\right)^{-1}\right]^{1+\alpha} \int|f(y)| d \mu(y) \\
& \quad \leqslant C^{\prime} \delta\left(x, x^{\prime}\right)^{\alpha} t^{-(1+\alpha)} C \mu\left(B\left(x_{0}, r\right)\right)^{n+1}
\end{aligned}
$$

As for part (iii), given $\varepsilon>0$, assume that $t<\varepsilon$; then

$$
\begin{aligned}
\left|f_{t}(x)-f(x)\right| & \leqslant \int s_{t}(x, y) f(y)-f(x) \mid d \mu(y) \\
& \leqslant C \int s_{t}(x, y) \delta(x, y)^{\eta} d \mu(y) \leqslant C t^{\eta}
\end{aligned}
$$

If $\delta\left(x, x^{\prime}\right) \geqslant t$, we get

$$
\left|f_{t}(x)-f(x)\right| \leqslant C \varepsilon^{\eta-\eta^{\prime}} \delta\left(x, x^{\prime}\right)^{\eta^{\prime}}
$$

Analogously for $f_{t}\left(x^{\prime}\right)-f\left(x^{\prime}\right)$. If $\delta\left(x, x^{\prime}\right)<t$, we have

$$
\begin{aligned}
& \left|\left(f_{t}(x)-f(x)\right)-\left(f_{t}\left(x^{\prime}\right)-f\left(x^{\prime}\right)\right)\right| \\
& \quad \leqslant\left|f_{t}(x)-f_{t}\left(x^{\prime}\right)\right|+\left|f(x)-f\left(x^{\prime}\right)\right|=I_{1}+I_{2}
\end{aligned}
$$

For I_{1}, we have

$$
\begin{aligned}
\left|f_{i}(x)-f_{t}\left(x^{\prime}\right)\right| & =\left|\int\right| s_{t}(x, y)-s_{t}\left(x^{\prime}, y\right)|f(y) d \mu(y)| \\
& \leqslant \int\left|s_{t}(x, y)-s_{t}\left(x^{\prime}, y\right)\right||f(y)-f(x)| d \mu(y) \\
& \leqslant C \delta\left(x, x^{\prime}\right)^{\alpha} t^{-1-\alpha} \int_{B_{\delta}(x, A t) \cup B_{\delta}\left(x^{\prime}, A t\right)} \delta(x, y)^{\eta} \cdot d \mu(y) \\
& \leqslant C^{\prime} \delta\left(x, x^{\prime}\right)^{\alpha} t^{-1-\alpha} t^{\eta+1} \leqslant C^{\prime \prime} \delta\left(x, x^{\prime}\right)^{\eta^{\prime}} \varepsilon^{\eta-\eta^{\prime}}
\end{aligned}
$$

The same estimate holds for $\left|f(x)-f\left(x^{\prime}\right)\right|=I_{2}$. This ends the proof of the proposition.

II. Singular Integral Operators

In this chapter (X, δ, μ) will be a triple satisfying the following conditions:
(i) $0 \leqslant \delta(x, y)<\infty$ and $\delta(x, y)=0$ if and only if $x=y$,
(ii) $\delta(x, y)=\delta(y, x)$,
(iii) $\delta(x, y) \leqslant K(\delta(x, z)+\delta(z, y))$,
(iv) if $k_{1} \mu(\{x\}) \leqslant r \leqslant k_{2} \mu(X)$ then $r A_{1} \leqslant \mu\left(B_{\delta}(x, r)\right) \leqslant r A_{2}$,
(v) if $r<k_{1} \mu(\{x\})$ then $B_{\delta}(x, r)=\{x\}$,
(vi) if $r>k_{2} \mu(X)$ then $B_{\delta}(x, r)=X$, and
(vii) there exists $\alpha, 0<\alpha \leqslant 1$, such that

$$
\left|\delta(x, y)-\delta\left(x^{\prime}, y\right)\right| \leqslant C r^{1} \quad \alpha \delta\left(x, x^{\prime}\right)^{\alpha}
$$

holds, whenever $\delta(x, y)<r$ and $\delta\left(x^{\prime}, y\right)<r$,
where $K, k_{1}, k_{2}, A_{1}, A_{2}$, and C are constants. These conditions imply the existence of a constant A satisfying (1.2). For the sake of simplicity we shall assume that $A=K$.

Given a ball B and a number $\gamma, 0<\gamma \leqslant \alpha$, we denote by $A(B)$ the Banach space of complex-valued functions supported on B, such that

$$
\begin{equation*}
|\psi(x)-\psi(y)| \leqslant C \delta(x, y) \tag{2.2}
\end{equation*}
$$

Given $\psi \in \Lambda(B)$ we shall denote by $\|\psi\|_{\gamma}$ the infimum of the constants C appearing in (2.2).

We say that ψ belongs to Λ_{0}^{γ} if $\psi \in \Lambda^{\gamma}(B)$ for some ball B. On Λ_{0}^{γ} we define the topology which is the inductive limit of the spaces $\Lambda^{\gamma}(B)$, see [MS2], and $\left(A_{0}^{\gamma}\right)^{\prime}$ denotes the space of all continuous linear functions on Λ_{0}^{γ}. By $\left\{\Lambda_{0}^{\gamma}\right\}_{0}$ we denote the subspace of all functions ψ in Λ_{0}^{γ} such that $\int \psi(x) d \mu(x)=0 . A_{b}^{\gamma}$ stands for the space of bounded functions ψ satisfying (2.2). As usual, B.M.O. is the space of all the locally integrable functions g on X such that

$$
\mu(B)^{-1} \int_{B}\left|g(x)-m_{B} g\right| d \mu(x) \leqslant C
$$

where B is any ball and $m_{B} g=\mu(B)^{-1} \int_{B} g(x) d \mu(x)$.
We consider a continuous linear operator T from Λ_{0}^{γ} into $\left(\Lambda_{0}^{\gamma}\right)^{\prime}$ for some $\gamma, 0<\gamma \leqslant \alpha$, associated to a kernel $k(x, y)$, that is to say, for any x not in the support of f

$$
T f(x)=\int k(x, y) f(y) d \mu(y)
$$

Let $\tilde{k}(x, y)$ be the function defined by

$$
\begin{align*}
\sup \{ & \mu\left(B_{\delta}(x, \varepsilon)\right)^{-1} \mu\left(B_{\delta}(y, c)\right)^{-1} \\
& \left.\cdot \iint_{\substack{\delta(u, x)<\varepsilon \\
\delta(v, y)<\varepsilon}}|k(u, v)| d \mu(u) d s(v): \delta(x, y)>\varepsilon 4 A^{2}\right\} \tag{2.3}
\end{align*}
$$

We say that k satisfies an L^{r}-Dini condition $1 \leqslant r \leqslant \infty$, if the following conditions hold:

$$
\begin{gather*}
\text { for any } R>0, \\
\left(\int_{R<\delta(x, y) \leqslant A R}\left(|\widetilde{k}(x, y)|^{r}+|\widetilde{k}(y, x)|^{r}\right) d \mu(y)\right)^{1 / r} \leqslant C R^{-1 / r^{r}}, \tag{2.4}
\end{gather*}
$$

there exists $\eta, 0<\eta \leqslant \alpha$, such that if $A \delta(y, z) \leqslant R$, then

$$
\begin{equation*}
\left(\int_{R<\delta(y, x) \leqslant A R}|k(y, x)-k(z, x)|^{r} d \mu(x)\right)^{1 / r} \leqslant C R^{-1 / r^{r}}\left(\frac{\delta(y, z)}{R}\right)^{\eta}, \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\int_{R<\delta(y, x) \leqslant A R}|k(x, y)-k(x, z)|^{r} d \mu(x)\right)^{1 / r} \leqslant C R^{-1 / r^{\prime}}\left(\frac{\delta(y, z)}{R}\right)^{\eta} . \tag{2.6}
\end{equation*}
$$

(2.7) Lemma. Let $k(x, y)$ be a kernel satisfying (2.4), and $\eta, 0<\eta \leqslant \alpha$, then

$$
\int_{B_{\delta}(x, s)} \delta(x, y)^{\eta} \tilde{k}(x, y) d \mu(y) \leqslant C \min \left(s^{\eta}, \mu\left(B_{\delta}(x, s)\right)^{\eta}\right)
$$

Proof. If $s<k_{1} \mu(\{x\})$, then the integral is equal to zero. It is enough to assume $s<k_{2} \mu(X)$. Then

$$
\begin{aligned}
& \int_{B_{\delta}(x, s)} \delta(x, y)^{\eta} \tilde{k}(x, y) d \mu(y) \\
& \leqslant \sum_{j=0}^{\infty} \int_{A^{-i_{s}<\delta(x, y)} A^{-j+1_{s}}} \delta(x, y)^{\eta} \tilde{k}(x, y) d \mu(y) \\
& \leqslant \sum_{j=0}^{\infty}\left(\int_{A^{-i} s<\delta(x, y) \leqslant A^{-j+1}}|\tilde{k}(x, y)|^{r} d \mu(y)\right)^{1 / r} \\
& \times\left(\int_{A^{-j_{s}<\delta(x, y) \leqslant A^{-j+1_{s}}}} \delta(x, y)^{r^{\prime}} d \mu(y)\right)^{1 / r^{\prime}} \\
& \leqslant C \sum_{j=0}^{\infty}\left(A^{-j} S\right)^{-1 / r^{\prime}}\left(A^{-j} S\right)^{\eta}\left(A^{-j} S\right)^{1 / r^{\prime}} \leqslant C s^{n} .
\end{aligned}
$$

(2.8) Defintion. We say that T is weakly bounded of order $\gamma, 0<\leqslant \alpha$, if T is a linear operator from Λ_{0}^{y} into $\left(\Lambda_{0}^{\gamma}\right)^{\prime}$ and

$$
\begin{equation*}
|\langle T f, g\rangle| \leqslant C \mu(B)^{1+2 \gamma}\|f f\|_{\gamma}\|g\|_{\gamma} \tag{2.9}
\end{equation*}
$$

holds for any ball B and functions f and g with their supports contained in B.
(2.10) Lemma. Let T be a continuous linear operator from Λ_{0}^{γ} into $\left(\Lambda_{0}^{\gamma}\right)^{\prime}$ for some $\gamma, 0<\gamma<\alpha$, associated to a kernel satisfying (2.4) and (2.5). Let us assume that T is weakly bounded of order η, for some $\eta, \gamma \leqslant \eta$. Then, for any f, g, and h in $\Lambda_{0}^{\gamma^{\prime}}, \gamma^{\prime}>\gamma$,

$$
\begin{align*}
\langle T g h, f\rangle= & \langle T h, f g\rangle+\iint f(x)[g(y)-g(x)] \\
& \times k(x, y) h(y) d \mu(x) d \mu(y) \tag{2.11}
\end{align*}
$$

holds.
Proof. It is clear that (2.11) holds if T is defined by integration against a locally bounded kernel.
In the general case let T_{t} be defined from $\Lambda_{0}^{y^{\prime}}$ into $\left(\Lambda_{0}^{\gamma^{\prime}}\right)^{\prime}$ by

$$
\left\langle T_{t} f, g\right\rangle=\left\langle T f_{t}, g_{t}\right\rangle .
$$

f_{t} and g_{t} are introduced in Proposition (1.20). Let $B=B_{\delta}\left(x_{0}, r\right)$ be a ball containing the support of f; then for $z \in B$, the support of $s_{t}(\cdot, z)$ is contained in the ball $B_{\delta}\left(x_{0}, C_{t} r\right)$. Thus, the application

$$
z \rightarrow s_{t}(\cdot, z), \quad z \in B,
$$

is a $A^{y^{\prime}}\left(B_{\delta}\left(x_{0}, C_{t} r\right)\right)$-valued Bochner integrable function with respect to the measure $|f(z)| d \mu(z)$. Therefore,

$$
T_{t}(z, y)=\left\langle T s_{t}(\cdot, z), s_{t}(\cdot, y)\right\rangle
$$

is the kernel associated to T_{t}.
Since by Theorem (1.13) $s_{t}(\cdot, z) \in \Lambda_{0}^{\eta}$, then, by (2.9) (weak boundedness) and (2.4), if $t<k_{2} \mu(X)$, we get

$$
\left|T_{t}(z, y)\right| \leqslant C\left|\mu\left(B_{\delta}(z, t)\right)+\mu\left(B_{\delta}(y, t)\right)\right|^{-1} .
$$

Then (2.11) holds for T_{t}. On the other hand, by Proposition (1.20), f_{t} converges to f in Λ_{0}^{γ} for f in $\Lambda_{0}^{\gamma^{\prime}}$ when t goes to zero. Therefore, $\left\langle T_{t} f, g\right\rangle$ converges to $\langle T f, g\rangle$ for f and g in $\Lambda_{0}^{\gamma^{\prime}}$. Moreover, $T_{t}(x, y)$ converges pointwise to $k(x, y)$. Using again (2.4) and weak boundedness, it follows that for t sufficiently small, $\left|T_{t}(x, y)\right| \leqslant C \widetilde{k}(x, y)$. Then, by the Lebesgue dominated convergence theorem, the right hand side of (2.11) is equal to the limit of

$$
\iint f(x)|g(y)-g(x)| T_{t}(x, y) h(y) d \mu(x) d \mu(y)
$$

Given a ball $B=B_{\delta}(z, s)$ we define

$$
\begin{equation*}
h_{B}(y)=h\left(\delta(z, y) / 4 A^{2} s\right), \tag{2.12}
\end{equation*}
$$

where h is the function considered in (1.15).
(2.13) Lemma. Let $k(x, y)$ be a kernel satisfying (2.5) and $B=B_{\delta}(z, s)$. Then for any $x_{1}, x_{2} \in B$

$$
\left|\int\left(k\left(x_{1}, y\right)-k\left(x_{2}, y\right)\right)\left(1-h_{B}(y)\right) d \mu(y)\right| \leqslant C\left(\frac{\delta\left(x_{1}, x_{2}\right)}{A \mu(B)}\right)^{\eta} \leqslant C .
$$

Proof. It is enough to prove the lemma for $k_{1} \mu(\{z\}) \leqslant s \leqslant k_{2} \mu(X)$. Then

$$
\begin{aligned}
& \int_{4 A^{2} s<\delta(z, y)}\left|k\left(x_{1}, y\right)-k\left(x_{2}, y\right)\right| d \mu(y) \\
& \quad \leqslant \int_{3 A s<\delta\left(x_{1}, y\right)}\left|k\left(x_{1}, y\right)-k\left(x_{2}, y\right)\right| d \mu(y) \\
& \quad \leqslant \sum_{j=0}^{\infty} \int_{A^{\prime} 3 A s<\delta\left(x_{1}, y\right) \leqslant A^{j}+13 A s}\left|k\left(x_{1}, y\right)-k\left(x_{2}, y\right)\right| d \mu(y) .
\end{aligned}
$$

Therefore, by (2.5), this is less than

$$
\begin{aligned}
& \sum_{j=0}^{\infty}\left(A^{j+1} 3 A s\right)^{1 / r^{\prime}}\left(A^{j} 3 A s\right)^{-1 / r^{\prime}}\left(\delta\left(x_{1}, x_{2}\right)\right)^{\eta}\left(A^{j} 3 A s\right)^{-\eta} \\
& \leqslant C\left(\frac{\delta\left(x_{1}, x_{2}\right)}{A s}\right)^{\eta} \sum_{j=0}^{\infty} \frac{1}{A^{j \eta}}=C\left(\frac{\delta\left(x_{1}, x_{2}\right)}{A s}\right)^{\eta} \\
& \leqslant C\left(\frac{\delta\left(x_{1}, x_{2}\right)}{A \mu(B)}\right)^{\eta}
\end{aligned}
$$

(2.14) Lemma. Let $k(x, y)$ be a kernel satisfying (2.5), $B=B_{\delta}(z, s)$, and $\phi \in \Lambda_{b}^{\gamma}, 0<\gamma \leqslant \alpha$. Then

$$
I_{B} \phi(x)=\int(k(x, y)-k(z, y)) \phi(y)\left(1-h_{B}(y)\right) d \mu(y)
$$

is well defined for any $x \in B$. Moreover, $I_{B} \phi \in \Lambda^{\gamma}(B)^{\prime}$ and I_{B} satisfies (2.9) for functions supported on B.

Proof. We can assume $s \leqslant k_{2} \mu(X)$, since otherwise $I_{B} \phi=0$. Let $\psi \in A^{\gamma}(B)$. By Lemma (2.13) we get

$$
\begin{aligned}
\left|\int I_{B} \phi(x) \psi(x) d \mu(x)\right| & \leqslant C\|\psi\|_{\infty}\|\phi\|_{\infty} \int_{\delta(x, z)<s}\left(\frac{\delta(x, z)}{s}\right)^{\eta} d \mu(x) \\
& \leqslant C\|\psi\|_{\infty}\|\phi\|_{\infty} \mu(B) \leqslant C \mu(B)^{1+\gamma}\|\phi\|_{\infty}\|\psi\|_{\gamma} .
\end{aligned}
$$

If $\phi \in \Lambda^{\gamma}(B)$ then

$$
\left|\int I_{B} \phi(x) \psi(x) d \mu(x)\right| \leqslant C \mu(B)^{1+2 \gamma}\|\phi\|_{\gamma}\|\psi\|_{\gamma} .
$$

(2.15) Definition. Let T be a linear operator from Λ_{0}^{γ} into $\left(\Lambda_{0}^{\gamma}\right)^{\prime}$. Given $B=B_{\delta}(z, r)$ we define T_{B} from Λ_{b}^{γ} into $\Lambda^{\gamma}(B)^{\prime}$ as

$$
T_{B} \phi=T\left(\phi h_{B}\right)+I_{B} \phi
$$

(2.16) Lemma. Let T be a continuous linear operator from Λ_{0}^{γ} into $\left(\Lambda_{0}^{\gamma}\right)^{\prime}$ associated to a kernel satisfying (2.5). Then for any pair of balls $B_{1}=B_{\delta}\left(z_{1}, r_{1}\right) \subset B_{2}=B_{\delta}\left(z_{2}, r_{2}\right)$,

$$
\left\langle T_{B_{1}} \phi, \psi\right\rangle=\left\langle T_{B_{2}} \phi, \psi\right\rangle
$$

holds for any $\psi \in\left\{\Lambda^{\gamma}\left(B_{1}\right)\right\}_{0}$, the set of functions in $\Lambda^{\gamma}\left(B_{1}\right)$ with integral equal to zero, and $\phi \in \Lambda_{b}^{\gamma}$.

Proof. We have

$$
\begin{aligned}
\left\langle T_{B_{2}} \phi, \psi\right\rangle= & \left\langle T\left(\phi h_{B_{2}}\right), \psi\right\rangle+\left\langle I_{B_{2}} \phi, \psi\right\rangle \\
= & \left\langle T\left(\phi h_{B_{1}}\right), \psi\right\rangle+\left\langle T \phi\left(h_{B_{2}}-h_{B_{1}}\right), \psi\right\rangle \\
& +\int I_{B_{2}} \phi(x) \psi(x) d \mu(x) \\
= & \left\langle T\left(\phi h_{B_{1}}\right), \psi\right\rangle+\int \psi(x) \int k(x, y)\left[h_{B_{2}}(y)-h_{B_{1}}(y)\right] \\
& \times \phi(y) d \mu(y) d \mu(x)+\int I_{B_{2}} \phi(x) \psi(x) d \mu(x) .
\end{aligned}
$$

Clearly,

$$
T \phi\left(h_{B_{2}}-h_{B_{1}}\right)\left(z_{1}\right)=\int k\left(z_{1}, y\right) \phi(y)\left[h_{B_{2}}-h_{B_{1}}(y)\right] d y
$$

and

$$
-I_{B_{2}} \phi\left(z_{1}\right)=\int\left[k\left(z_{2}, y\right)-k\left(z_{1}, y\right)\right]\left[1-h_{B_{2}}(y)\right] \phi(y) d y .
$$

Then, since $\int \psi=0$, we get

$$
\begin{aligned}
\left\langle T_{B_{2}} \phi, \psi\right\rangle= & \left\langle T\left(\phi h_{B_{1}}\right), \psi\right\rangle \\
& +\int \psi(x) \int\left[k(x, y)-k\left(z_{1}, y\right)\right] \phi(y)\left[1-h_{B_{1}}(y)\right] d \mu(y) d \mu(x) \\
= & \left\langle T\left(\phi h_{B_{1}}\right), \psi\right\rangle+\left\langle I_{B_{1}} \phi, \psi\right\rangle=\left\langle T_{B_{1}} \phi, \psi\right\rangle
\end{aligned}
$$

It is clear that

$$
\left\langle T_{B} \phi, \psi\right\rangle=\langle T \phi, \psi\rangle,
$$

whenever $\operatorname{supp}(\phi) \subset B_{1}$. Then Lemma (2.16) allows us to introduce the following extension of T.
(2.17) Definition. Let T be a continuous linear operator from Λ_{0}^{γ} into $\left(\Lambda_{0}^{\gamma}\right)^{\prime}$ associated to a kernel satisfying (2.5). For any $\phi \in \Lambda_{b}^{\gamma}$ and $\psi \in\left\{\Lambda_{0}^{\gamma}\right\}_{0}$ with supp $\psi \subset B$, we define

$$
\langle T \phi, \psi\rangle=\left\langle T_{B} \phi, \psi\right\rangle
$$

(2.18) Lemma. Let T be a continuous linear operator from Λ_{0}^{γ} into $\left(\Lambda_{0}^{\gamma}\right)^{\prime}$ associated to a kernel $k(x, y)$ satisfying (2.5), and such that T is weakly bounded of order γ. Assume that $T 1=g$ with $g \in$ B.M.O. Then, given a ball $B=B_{\delta}(z, r)$, there exists a constant c_{B} such that for any $\phi \in \Lambda^{\gamma}(B)$

$$
\begin{aligned}
\left\langle T h_{B}, \phi\right\rangle= & \int\left(g(x)-m_{B}(g)\right) \phi(x) d \mu(x)+c_{B} \int \phi(x) d \mu(x) \\
& -\int I_{B} 1(x) \phi(x) d \mu(x)
\end{aligned}
$$

Moreover, $\sup _{B}\left|c_{B}\right| \leqslant C$, where C is an absolute constant depending on the constants appearing in (2.5), (2.9), and $\|g\|_{\text {вмо }}$.

Proof. Given the ball $B=B_{\delta}(z, r)$, consider the function

$$
h_{B}^{\prime}(y)=h\left(A^{2} \delta(z, y) / r\right),
$$

where h is the function considered in (1.15). This function is supported in $B_{\delta}(z, r / A)$. Therefore the function

$$
l_{B}(y)=\left(\int h_{B}^{\prime}(y) d \mu(y)\right)^{-1} h_{B}^{\prime}(y)
$$

is supported in $B_{\delta}(z, r / A)$ and its integral is equal to one.
Then, given $\phi \in \Lambda^{\gamma}(B)$, we have

$$
\begin{aligned}
\left\langle T h_{B}+\right. & \left.I_{B} 1, \phi\right\rangle \\
= & \left\langle T h_{B}+I_{B} 1, \phi-\left(\int \phi\right) l_{B}\right\rangle+\left\langle T h_{B}+I_{B} 1,\left(\int \phi\right) l_{B}\right\rangle \\
= & \left\langle g, \phi-\left(\int \phi\right) l_{B}\right\rangle+\left\langle T h_{B}+I_{B} 1, l_{B}\right\rangle \int \phi(x) d \mu(x) \\
= & \int\left(g(x)-m_{B} g\right) \phi(x) d \mu(x)+m_{B} g \int \phi(x) d \mu(x) \\
& -\left\langle g, l_{B}\right\rangle \int \phi(x) d \mu(x)+\left\langle T h_{B}+I_{B} 1, l_{B}\right\rangle \int \phi(x) d \mu(x) \\
= & \int\left(g(x)-m_{B} g\right) \phi(x) d \mu(x)+c_{B} \int \phi(x) d \mu(x)
\end{aligned}
$$

where

$$
c_{B}=\left\langle T h_{B}+I_{B} 1-\left(g-m_{B}(g)\right), l_{B}\right\rangle .
$$

It is easy to check that

$$
\left\|h_{B}^{\prime}\right\|_{\gamma} \leqslant C \mu(B)^{-\gamma} \quad \text { and } \quad\left\|l_{B}\right\|_{\gamma} \leqslant C \mu(B)^{-(1+\gamma)}
$$

then, by weak boundedness (2.9),

$$
\left|\left\langle T h_{B}, l_{B}\right\rangle\right| \leqslant C \mu(B)^{1+2 \gamma}\left\|h_{B}\right\|\left\|_{\gamma}\right\| l_{B} \|_{\gamma} \leqslant C,
$$

and, by Lemma (2.13),

$$
\left|\left\langle I_{B} 1, l_{B}\right\rangle\right| \leqslant C \mu(B)^{1+\gamma}\left\|l_{B}\right\|_{\gamma} \leqslant C .
$$

Finally, it is clear that

$$
\left|\left\langle g-m_{B} g, l_{B}\right\rangle\right| \leqslant C\|g\|_{\text {вмо }} .
$$

These estimates show that $\left|c_{B}\right|$ is bounded by a constant C not depending on B.
(2.19) Corollary. Let T be an operator satisfying all the conditions of Lemma (2.18). Then $g \in L^{\infty}$ if and only if $\left|\left\langle T h_{B}, \phi\right\rangle\right| \leqslant C\|\phi\|_{1}$ for any $\phi \in A^{y}(B)$, where C is an absolute constant not depending on B.
(2.20) Definition. Let T be an operator satisfying the conditions of Lemma (18.1). Given $\phi \in A^{\gamma}(B)$ and $x \in B$, we define

$$
\begin{aligned}
T^{B} \phi(x)= & \left(g(x)-m_{B} g\right) \phi(x)+c_{B} \phi(x)-I_{B} 1(x) \phi(x) \\
& +\int[\phi(y)-\phi(x)] k(x, y) h_{B}(y) d \mu(y) .
\end{aligned}
$$

(2.21) Lemma. Let $B_{1}=B_{\delta}\left(z_{1}, r_{1}\right) \subset B_{2}=B_{\delta}\left(z_{2}, r_{2}\right)$ and $\phi \in \Lambda^{\gamma}\left(B_{1}\right)$. Then

$$
T^{B_{2}} \phi(x)=T^{B_{1}} \phi(x), \quad \text { for } \quad x \in B_{1}
$$

Proof. First observe that

$$
\begin{align*}
c_{B_{2}}-c_{B_{1}}= & \left\langle T h_{B_{2}}+I_{B_{2}} 1-\left(g-m_{2} g\right), l_{B_{2}}-l_{B_{1}}\right\rangle \\
& +\left\langle T h_{B_{2}}+I_{B_{2}} 1-\left(g-m_{B_{2}} g\right), l_{B_{1}}\right\rangle \\
& -\left\langle T h_{B_{1}}+I_{B_{1}} 1-\left(g-m_{B_{1}} g\right), l_{B_{1}}\right\rangle \\
= & \left\langle T\left(h_{B_{2}}-h_{B_{1}}\right)+I_{B_{2}} 1-I_{B_{1}} 1, l_{B_{1}}\right\rangle+m_{B_{2}} g-m_{B_{1}} g . \tag{2.22}
\end{align*}
$$

On the other hand

$$
\begin{align*}
I_{B_{1}} 1(x) & -I_{B_{2}} 1(x) \\
= & \int k(x, y)\left(h_{B_{2}}(y)-h_{B_{1}}(y)\right) d \mu(y) \\
& +\int\left(k\left(z_{2}, y\right)-k\left(z_{1}, y\right)\right)\left(1-h_{B_{2}}(y)\right) d \mu(y) \\
& -\int k\left(z_{1}, y\right)\left(h_{B_{2}}(y)-h_{B_{1}}(y)\right) d \mu(y) \\
= & T\left(h_{B_{2}}-h_{B_{1}}\right)(x)-I_{B_{2}} 1\left(z_{1}\right)-T\left(h_{B_{2}}-h_{B_{1}}\right)\left(z_{1}\right) ; \tag{2.23}
\end{align*}
$$

consequently,

$$
\begin{align*}
\left\langle T\left(h_{B_{2}}-h_{B_{1}}\right)-I_{B_{2}} 1-I_{B_{1}} 1, l_{B}\right\rangle & =\left\langle I_{B_{2}} 1\left(z_{1}\right)+T\left(h_{B_{2}}-h_{B_{1}}\right)\left(z_{1}\right), l_{B}\right\rangle \\
& =I_{B_{2}} 1\left(z_{1}\right)+T\left(h_{B_{2}}-h_{B_{1}}\right)\left(z_{1}\right) . \tag{2.24}
\end{align*}
$$

Moreover,

$$
\begin{align*}
& \int|\phi(y)-\phi(x)| k(x, y)\left(h_{B_{2}}(y)-h_{B_{1}}(y)\right) d \mu(y) \\
& \quad=-\phi(x) \int k(x, y)\left(h_{B_{2}}(y)-h_{B_{1}}(y)\right) d \mu(y) \\
& \quad=-\phi(x) T\left(h_{B_{2}}-h_{B_{1}}\right)(x) . \tag{2.25}
\end{align*}
$$

Then passing up together (2.22), (2.23), (2.24), and (2.25), we obtain the result sought.

Given $\phi \in A_{0}^{\gamma}$, Lemma (2.21) allows us to define $\tilde{T} \phi$ as the function

$$
\begin{equation*}
\tilde{T} \phi(x)=T^{B} \phi(x) \tag{2.26}
\end{equation*}
$$

where B is a ball containing the support of ϕ and $x \in B$.
Now we can prove the main result.
(2.27) THEOREM. Let T be a continuous linear operator from Λ_{0}^{γ} into $\left(A_{0}^{\gamma}\right)^{\prime}$, for every $0<\gamma \leqslant \alpha$, with an associated kernel satisfying (2.4) and (2.5), and such that $T 1=g, g \in \mathrm{BMO}$. Then for any $\eta, 0<\eta \leqslant \alpha$, the following conditions are equivalent:

$$
\begin{gather*}
T \text { is weakly bounded of order } \eta . \tag{2.28}\\
\text { For any } \phi \in \Lambda_{0}^{\eta}, T \phi=\widetilde{T} \phi . \tag{2.29}
\end{gather*}
$$

Proof. Let us show that (2.28) implies (2.29). Let $\psi, \phi \in \Lambda^{\eta}(B)$. Then, by Lemma (2.10),

$$
\langle T \phi, \psi\rangle=\left\langle T h_{B}, \phi \psi\right\rangle+\iint \psi(x)[\phi(y)-\phi(x)] k(x, y) h_{B}(y) d \mu(x) d \mu(y),
$$

and (2.29) follows by applying Lemma (2.18). Let us prove the converse. Given $B=B_{\delta}(z, s)$, we apply Lemma (2.7), getting

$$
\begin{aligned}
& \left|\int[\phi(y)-\phi(x)] k(x, y) h_{B}(y) d \mu(y)\right| \\
& \quad \leqslant C\|\phi\|_{\eta} \int_{B_{\delta}(z, A s)} \delta(x, y)^{\eta} \tilde{k}(x, y) d \mu(y) \\
& \quad \leqslant C\|\phi\|_{\eta} \int_{B_{\delta}\left(x, 2 A^{2} s\right)} \delta(x, y)^{\eta} \tilde{k}(x, y) d \mu(y) \\
& \quad \leqslant C\|\phi\|_{\eta} \mu(B)^{\eta} ;
\end{aligned}
$$

therefore, for $\phi, \psi \in \Lambda^{\gamma}(B)$,

$$
\begin{aligned}
|\langle T \phi, \psi\rangle| \leqslant & \left|\int\left(g(x)-m_{B} g\right) \phi(x) \psi(x) d \mu(x)\right|+C \int|\phi(x) \psi(x)| d \mu(x) \\
& +\int\left|I_{B} 1(x)\right||\phi(x) \psi(x)| d \mu(x)+C\|\phi\|_{\eta} \mu(B)^{\eta} \int|\psi(x)| d \mu(x) \\
\leqslant & \left(\|g\|_{\text {вмо }}+C\right)\|\phi\|_{\infty}\|\psi\|_{\infty} \mu(B)+\| \| \phi\left\|_{\eta} \mu(B)^{1+2 \eta}\right\| \psi \|_{\eta} \\
\leqslant & \left(\|g\|_{\text {вмо }}+C\right) \mu(B)^{1+2 \eta}\|\phi\|_{\eta}\|\psi\|_{\eta} .
\end{aligned}
$$

(2.30) Remark. Consider the operator

$$
T \phi(x)=g(x) \phi(x) .
$$

If T is weakly bounded of order γ then, for every ball B,

$$
\left|\left\langle T h_{B}, l_{B}\right\rangle\right| \leqslant C \mu(B)^{1+2 \gamma}\left\|h_{B}\right\|_{\gamma}\left\|l_{B}\right\|_{\gamma} \leqslant C .
$$

This means that for every B,

$$
\left|\int g(x) l_{B}(x) d x\right| \leqslant C,
$$

and by differentiation (assuming that it holds) we get $|g(x)| \leqslant C$.
(2.31) Corollary. Let T be an operator satisfying the hypotheses and conclusions of Theorem (2.27). Then the kernel $k(x, y)$ is zero if and only if $T \phi(x)=h(x) \phi(x)$, with $h \in L^{\infty}$.

Proof. Assume that the kernel is zero. Then

$$
T \phi(x)=\left(g(x)-m_{B} g\right) \phi(x)+c_{B} \phi(x)=\left(g(x)-m_{B} g+c_{B}\right) \phi(x) .
$$

Therefore, by Remark (2.30), $g(x)-m_{B} g+c_{B}$ must be bounded, but since c_{B} is bounded this tells us that g must be bounded. In other words, $h(x)=g(x)-m_{B} g+c_{B}$.
(2.32) Theorem. Let T be a continuous linear operator defined from Λ_{0}^{γ} into ($\left.\Lambda_{0}^{\gamma}\right)^{\prime}$ for every $\gamma, 0<\gamma \leqslant \alpha$, weakly bounded of order η for some η, $0<\eta \leqslant \alpha$, and with an associated kernel satisfying (2.4) and (2.5) for $\eta+\varepsilon$ with $\varepsilon>0$. Assume that $T 1=g$ belongs to B.M.O. Then T satisfies
$\|T \phi\|_{n} \leqslant C\|\phi\|_{\eta} \quad$ and $\quad T \phi$ is a bounded function, if and only if $T 1=0$.

Proof. Assume first that $T 1=0$. Given $x_{1}, x_{2} \in X, \phi \in \Lambda_{0}^{\eta}$, and $B_{1}=B_{\delta}\left(x_{1}, \delta\left(x_{1}, x_{2}\right)\right)$, we consider $B=B_{\delta}\left(x_{1}, s\right)$ such that $x_{1}, x_{2} \in B$, $\operatorname{supp} \phi \subset B$, and $A \delta\left(x_{1}, x_{2}\right)<s$.

We want to show that $T^{B} \phi$ is a Lipschitz function. Let us estimate the difference

$$
\begin{aligned}
& \left|T^{B} \phi\left(x_{1}\right)-T^{B} \phi\left(x_{2}\right)\right| \\
& \leqslant \\
& \quad c_{B}\left|\phi\left(x_{1}\right)-\phi\left(x_{2}\right)\right| \\
& \quad+\left|I_{B} 1\left(x_{1}\right) \phi\left(x_{1}\right)-I_{B} 1\left(x_{2}\right) \phi\left(x_{2}\right)\right| \\
& \quad+\mid \int\left[\phi(y)-\phi\left(x_{1}\right)\right] k\left(x_{2}, y\right) h_{B}(y) d \mu(y) \\
& \quad-\int\left[\phi(y)-\phi\left(x_{2}\right)\right] k\left(x_{2}, y\right) h_{B}(y) d \mu(y) \mid \\
& = \\
& \sigma_{1}+\sigma_{2}+\sigma_{3}
\end{aligned}
$$

We have

$$
\sigma_{1} \leqslant \sup _{B}\left|c_{B}\right|\|\phi\|_{\eta} \delta\left(x_{1}, x_{2}\right)^{\eta}
$$

On the other hand, since $I_{B} 1\left(x_{1}\right)=0$, by Lemma (2.13) we have

$$
\sigma_{2} \leqslant C\|\phi\|_{\infty}\left(\frac{\delta\left(x_{1}, x_{2}\right)}{A \mu(B)}\right)^{\eta} \leqslant C\|\phi\|_{\eta} \delta\left(x_{1}, x_{2}\right)^{\eta}
$$

As for σ_{3}, we have

$$
\begin{aligned}
\sigma_{3} \leqslant & \left|\int\left[\phi(y)-\phi\left(x_{1}\right)\right] k\left(x_{1}, y\right) h_{B}(y) h_{B_{1}}(y) d \mu(y)\right| \\
& +\left|\int\left[\phi(y)-\phi\left(x_{2}\right)\right] k\left(x_{2}, y\right) h_{B}(y) h_{B_{1}}(y) d \mu(y)\right| \\
& +\mid \int\left\{\left[\phi(y)-\phi\left(x_{1}\right)\right] k\left(x_{1}, y\right)\right. \\
& \left.-\left[\phi(y)-\phi\left(x_{2}\right)\right] k\left(x_{2}, y\right)\right\} h_{B}(y)\left(1-h_{B_{1}}(y)\right) d \mu(y) \mid \\
= & \sigma_{31}+\sigma_{31}+\sigma_{33} .
\end{aligned}
$$

By Lemma (2.7) we have

$$
\begin{aligned}
\sigma_{31} & \leqslant C\|\phi\|_{\eta} \int \delta\left(x_{1}, y\right)^{\eta} \tilde{k}\left(x_{1}, y\right) h_{B}(y) h_{B_{1}}(y) d \mu(y) \\
& \leqslant C\|\phi\|_{\eta} \int_{\delta\left(x_{1}, y\right)<A^{2} \delta\left(x_{1}, x_{2}\right)} \delta\left(x_{1}, y\right)^{\eta} \tilde{k}\left(x_{1}, y\right) d \mu(y) \\
& \leqslant C\|\phi\|_{\eta} \delta\left(x_{1}, x_{2}\right)^{\eta} .
\end{aligned}
$$

Analogously,

$$
\begin{aligned}
\sigma_{32} & \leqslant C\|\phi\|_{\eta} \int_{\delta\left(x_{1}, y\right)<A^{2} \delta\left(x_{1}, x_{2}\right)} \delta\left(x_{2}, y\right)^{\eta} \tilde{k}\left(x_{2}, y\right) d \mu(y) \\
& \leqslant C\|\phi\|_{\eta} \int_{\delta\left(x_{2}, y\right)<A^{3} \delta\left(x_{1}, x_{2}\right)} \delta\left(x_{2}, y\right)^{\eta} \widetilde{k}\left(x_{2}, y\right) d \mu(y) \\
& \leqslant C\|\phi\|_{\eta} \delta\left(x_{1}, x_{2}\right)^{\eta} .
\end{aligned}
$$

It is clear that

$$
\begin{aligned}
\sigma_{33} \leqslant & \left|\phi\left(x_{2}\right)-\phi\left(x_{1}\right)\right|\left|\int K\left(x_{1}, y\right) h_{B}(y)\left(1-h_{B_{1}}(y)\right) d \mu(y)\right| \\
& +\int\left|\phi(y)-\phi\left(x_{2}\right)\right| \\
& \times\left|K\left(x_{1}, y\right)-K\left(x_{2}, y\right)\right| h_{B}(y)\left(1-h_{B_{1}}(y)\right) d \mu(y) \\
= & \sigma_{331}+\sigma_{332} .
\end{aligned}
$$

By the definition of the associated kernel and Corollary (2.19),

$$
\begin{aligned}
\sigma_{331} & \leqslant C\|\phi\|_{\eta} \delta\left(x_{1}, x_{2}\right)^{\eta}\left(\left|T h_{B}\left(x_{1}\right)\right|+\left|T h_{B_{1}}\left(x_{1}\right)\right|\right) \\
& \leqslant C\|\phi\|_{\eta} \delta\left(x_{1}, x_{2}\right)^{\eta} .
\end{aligned}
$$

On the other hand, by (2.5)

$$
\begin{aligned}
\sigma_{332} \leqslant & \|\phi\|_{\eta} \int_{A \delta\left(x_{1}, x_{2}\right)<\delta\left(x_{1}, y\right)} \delta\left(x_{2}, y\right)^{\eta}\left|k\left(x_{1}, y\right)-k\left(x_{2}, y\right)\right| d \mu(y) \\
\leqslant & \|\phi\|_{\eta} \sum_{j=0}^{\infty}\left(\int_{A^{i} A \delta\left(x_{1}, x_{2}\right)<\delta\left(x_{1}, y\right)<A^{j+1} A \delta\left(x_{1}, x_{2}\right)} \mid k\left(x_{1}, y\right)\right. \\
& \left.-\left.k\left(x_{2}, y\right)\right|^{r} d \mu(y)\right)^{1 / r} \\
& \cdot\left(\int_{A^{\prime} A \delta\left(x_{1}, x_{2}\right)<\delta\left(x_{1}, y\right)<A^{j+1} A \delta\left(x_{1}, x_{2}\right)} \delta\left(x_{2}, y\right)^{n r^{\prime}} d \mu(y)\right)^{1 / r^{\prime}}
\end{aligned}
$$

$$
\begin{aligned}
\leqslant & C\|\phi\|_{\eta} \sum_{j-0}^{\infty}\left(A^{j} \delta\left(x_{1}, x_{2}\right)\right)^{-1 / r^{\prime}}\left(\frac{\delta\left(x_{1}, x_{2}\right)}{A^{j} \delta\left(x_{1}, x_{2}\right)}\right)^{\eta+\varepsilon} \\
& \cdot\left(A^{j} \delta\left(x_{1}, x_{2}\right)\right)^{\eta} \cdot\left(A^{j} \delta\left(x_{1}, x_{2}\right)\right)^{1 / r^{\prime}} \\
\leqslant & C\|\phi\|_{\eta} \delta\left(x_{1}, x_{2}\right)^{\eta} \sum_{j=0}^{\infty} A^{-j \varepsilon} \leqslant C\|\phi\|_{\eta} \delta\left(x_{1}, x_{2}\right)^{\eta} .
\end{aligned}
$$

Finally, we shall prove that if $\operatorname{supp} \phi \subset B_{0}$,

$$
\|T \phi(x)\|_{\infty} \leqslant C\|\phi\|_{\eta} \mu\left(B_{0}\right)^{\eta} .
$$

It is enough to show that

$$
\left|\int[\phi(y)-\phi(x)] k(x, y) h_{B}(y) d \mu(y)\right| \leqslant C\|\phi\|_{\eta}(\operatorname{diam}(\operatorname{supp} \phi))^{\eta}
$$

for any sufficiently large B.
Let $B_{0}=B_{\delta}\left(z, r_{0}\right), \quad B_{1}=B_{\delta}\left(z, A^{2} r_{0}\right)$, and $B=B_{\delta}(z, r)$ be such that $\operatorname{supp} \phi \subset B_{0}$ and $A^{3} r_{0}<r$.

Assume first that $x \notin B_{\delta}\left(z, A^{2} r_{0}\right)$. Then

$$
\begin{aligned}
\left|\int[\phi(y)-\phi(x)] k(x, y) h_{B}(y) d \mu(y)\right| & =\left|\int \phi(y) k(x, y) h_{B}(y) d \mu(y)\right| \\
& =\left|\int \phi(y) k(x, y) d \mu(y)\right|
\end{aligned}
$$

In this integral the relevant points y satisfy $\delta(z, y)<r_{0}$, since $y \in \operatorname{supp} \phi$, and $\delta(x, z)>A^{2} r_{0}$.

Then, if $A^{j} r_{0}<\delta(x, z) \leqslant A^{j+1} r_{0}, j \geqslant 2$, we have $A^{j-2}(A-1) r_{0}<$ $\delta(x, y) \leqslant 2 A^{j+2} r_{0}$.

Therefore, for $x \in B\left(z, A^{j+1} r_{0}\right) \backslash B\left(z, A^{j} r_{0}\right), j \geqslant 2$, we have

$$
\begin{aligned}
& \left|\int \phi(y) k(x, y) d \mu(y)\right| \\
& \quad=\left|\int_{A^{j-2}(A-1) r_{0}<\delta(x, y)<2 A^{j+2 r_{0}}} \phi(y) k(x, y) d \mu(y)\right| \\
& \quad \leqslant\|\phi\|_{\infty} \int_{A^{j-2}(A-1) r_{0}<\delta(x, y)<2 A^{j+2} r_{0}} \tilde{k}(x, y) d \mu(y) \\
& \quad \leqslant C\|\phi\|_{\infty}\left(\int_{A^{j-2} r_{0}<\delta(x, y)<2 A^{j+2} r_{0}} \tilde{k}(x, y)^{r} d \mu(y)\right)^{1 / r}\left(\mu\left(B_{\delta}\left(x, 2 A^{j+2} r_{0}\right)\right)^{1 / r^{\prime}}\right. \\
& \quad \leqslant C\|\phi\|_{\infty} \leqslant C\|\phi\|_{n} \mu\left(B_{0}\right)^{\eta} .
\end{aligned}
$$

If $x \in B\left(z, A^{2} r_{0}\right)$, using (2.4), (2.19), and (2.7), we get

$$
\begin{aligned}
& \left|\int[\phi(y)-\phi(x)] k(x, y) h_{B}(y) d \mu(y)\right| \\
& \quad \leqslant\left|\int[\phi(y)-\phi(x)] k(x, y) h_{B}(y) h_{B_{1}}(y) d \mu(y)\right| \\
& \quad+\left|\int[\phi(y)-\phi(x)] k(x, y) h_{B}(y)\left(1-h_{B_{1}}(y)\right) d \mu(y)\right| \\
& \leqslant
\end{aligned}\left|C \int_{\delta(x, y) \leqslant 2 A^{3} r_{0}}\| \| \|_{\eta} \delta(x, y)^{\eta} \tilde{k}(x, y) d \mu(y)\right|,
$$

In order to prove the converse, assume that T is continuous from Λ_{0}^{η} into $\Lambda_{b}^{\prime \prime}$. Then, by the computations above, this implies that the function defined for $x \in B$ as

$$
\left(g(x)-m_{B} g\right) \phi(x)
$$

is a Lipschitz function for any $\phi \in \Lambda_{0}^{\eta}$; moreover

$$
\begin{equation*}
\left\|\left(g(\cdot)-m_{B} g\right) \phi(\cdot)\right\|_{\eta} \leqslant C\|\phi\|_{\eta} \tag{2.33}
\end{equation*}
$$

Now take x_{1}, x_{2}, and $B=B_{\delta}(z, r)$ such that $x_{1}, x_{2} \in B$; then by (2.33),

$$
\begin{aligned}
\left|g\left(x_{1}\right)-g\left(x_{2}\right)\right| & =\left|\left(g\left(x_{1}\right)-m_{B} g\right)-\left(g\left(x_{2}\right)-m_{B} g\right)\right| \\
& =\left|\left(g\left(x_{1}\right)-m_{B} g\right) h_{B}\left(x_{1}\right)-\left(g\left(x_{2}\right)-m_{B} g\right) h_{B}\left(x_{2}\right)\right| \\
& \leqslant C\left\|h_{B}\right\|_{\eta} \leqslant C r^{-\eta} .
\end{aligned}
$$

Now letting $r \rightarrow \infty$ we obtain $g\left(x_{1}\right)=g\left(x_{2}\right)$. In other words, $g(x)$ is constant and $T 1=0$.

Let us define

$$
t_{j}(x, y)=s_{A^{-j}}(x, y)-s_{A^{-j-1}}(x, y),
$$

where $s_{t}(x, y)$ is the approximation of the identity introduced in Theorem (1.13). We define

$$
k_{j_{1}, j_{2}}(x, y)=\left\langle t_{j_{1}}(x, \cdot), T t_{j_{2}}(y, \cdot \cdot)\right\rangle .
$$

(2.34) ThEOREM. Let T be a continuous linear operator defined from Λ_{0}^{γ} into $\left(\Lambda_{0}^{\gamma}\right)^{\prime}$ for every $\gamma, 0<\gamma \leqslant \alpha$, weakly bounded of order η, for some η, $0<\eta \leqslant \alpha$, and with an associated kernel satisfying (13.1) and (13.2) with $1 / r^{\prime}+\eta>1$. Assume that $T 1=0$. Then the following inequality holds for $j_{1} \geqslant j_{2}$:

$$
\left|k_{j_{1}, j_{2}}(x, y)\right| \leqslant \frac{A^{\eta\left(j_{2}-j_{1}\right)} A^{j_{2}} A^{-j_{2}\left(1 / r^{\prime}+\eta\right)}}{\delta(x, y)^{1 / r^{\prime}+\eta}+A^{-j_{2}\left(1 / r^{\prime}+\eta\right)}}
$$

Proof. Let B be a ball with radius bigger than $A^{-j_{2}}$ and such that

$$
\left\{z: \delta(x, z)<C A^{-j_{1}}\right\} \cup\left\{z: \delta(y, z)<C A^{-j_{2}}\right\} \subset B
$$

Theorem (2.27) tells us that

$$
\begin{align*}
k_{j_{1}, j_{2}}(x, y)= & \left\langle t_{j_{1}}(x, \cdot), T^{B} t_{j_{2}}(y, \cdot)\right\rangle \\
= & c_{B} \int t_{j_{1}}(x, z) t_{j_{2}}(y, z) d \mu(z) \\
& -\int t_{j_{1}}(x, z) I_{B} 1(z) t_{j_{2}}(y, z) d \mu(z) \\
& +\int t_{j_{1}}(x, z)\left(\int\left(t_{j_{2}}(y, u)-t_{j_{2}}(y, z)\right) k(z, u) d \mu(u)\right) d \mu(z) . \tag{2.35}
\end{align*}
$$

Assume first that $\delta(x, y) \leqslant A(A+1) A^{-j_{2}}$. Then, by Theorem (1.13), we have

$$
\begin{aligned}
& \left|\int t_{j_{1}}(x, z) t_{j_{2}}(y, z) d \mu(z)\right| \\
& \quad=\left|\int t_{j_{1}}(x, z)\left(t_{j_{2}}(y, z)-t_{j_{2}}(y, x)\right) d \mu(z)\right| \\
& \quad \leqslant C \int t_{j_{1}}(x, z) A^{j_{2}(1+\eta)} \delta(x, z)^{\eta} d z \\
& \quad<C A^{-j_{1} \eta} A^{j_{2}(1+\eta)} \leqslant C \frac{A^{-j_{1} \eta}}{\delta(x, y)^{1+\eta}+A^{-j_{2}(1+\eta)}} \\
& \quad=C A^{\eta\left(j_{2}-j_{1}\right)} \frac{A^{-j_{2}(1+\eta)} A^{j_{2}}}{\delta(x, y)^{1+\eta}+A^{-j_{2}(1+\eta)}} .
\end{aligned}
$$

Analogously, by Lemma (2.13), we have

$$
\begin{aligned}
& \left|\int t_{j_{1}}(x, z) I_{B} 1(z) t_{j_{2}}(y, z) d \mu(z)\right| \\
& \quad=\left|\int t_{j_{1}}(x, z)\left[I_{B} 1(z) t_{j_{2}}(y, z)-I_{B} 1(x) t_{j_{2}}(y, x)\right] d \mu(z)\right| \\
& \quad \leqslant C \int t_{j_{1}}(x, z) A^{j_{2}(1+\eta)} \delta(x, z)^{\eta} d \mu(z) \\
& \quad \leqslant C A^{\eta\left(j_{2}-j_{1}\right)} \frac{A^{-j_{2}(1+\eta)}}{\delta(x, y)^{1+\eta}+A^{-j_{2}(1+\eta)}}
\end{aligned}
$$

Analogously, by Theorem (2.32), we have

$$
\begin{aligned}
& \left|\int t_{j_{1}}(x, z)\left(\int\left(t_{j_{2}}(y, u)-t_{j_{2}}(y, z)\right) k(z, u) d \mu(u)\right) d \mu(z)\right| \\
& \quad=\mid \int t_{j_{1}}(x, z)\left(\int\left(t_{j_{2}}(y, u)-t_{j_{2}}(y, z)\right) k(z, u) d \mu(u)\right. \\
& \left.\quad-\int\left(t_{j_{2}}(y, u)-t_{j_{2}}(y, x)\right) k(x, u) d \mu(u)\right) d \mu(z) \mid \\
& \quad \leqslant \int t_{j_{1}}(x, z) A^{j_{2}(1+\eta)} \delta(x, z)^{\eta} d \mu(z) \\
& \quad \leqslant C A^{\eta\left(j_{2}-j_{1}\right)} \frac{A^{-j_{2}(1+\eta)}}{\delta(x, y)^{1+\eta}+A^{-j_{2}(1+\eta)}} .
\end{aligned}
$$

Let us assume now that $\delta(x, y)>A(A+1) A^{-j_{2}}$. If $t_{j_{2}}(y, z) \neq 0$, then

$$
A(A+1) A^{j_{2}}<\delta(x, y) \leqslant A(\delta(x, z)+\delta(z, y)) \leqslant A\left(\delta(x, z)+A^{-j_{2}}\right)
$$

In other words,

$$
\delta(x, z)>A A^{-j_{2}}>A^{-j_{2}} \geqslant A^{-j_{1}}
$$

This tells us that $t_{j_{1}}(x, z)=0$ and therefore the first two integrals in (2.35) are zero.

We estimate now

$$
\int t_{j_{1}}(x, z)\left(\int\left(t_{j_{2}}(y, u)-t_{j_{2}}(y, z)\right) k(z, u) d \mu(u)\right) d \mu(z)
$$

As we have seen before, if $t_{j_{2}}(y, z) \neq 0$, then $t_{j_{1}}(x, z)=0$. Then it is enough to estimate

$$
\begin{aligned}
& \int t_{j_{1}}(x, z)\left(\int t_{j_{2}}(y, u) k(z, u) d \mu(u)\right) d \mu(z) \\
& \quad=\int t_{j_{1}}(x, z)\left(\int t_{j_{2}}(y, u)(k(z, u)-k(x, u)) d \mu(u)\right) d \mu(z)
\end{aligned}
$$

Observe that

$$
\begin{aligned}
\delta(x, y) & \leqslant A(\delta(x, u)+\delta(u, y))<A\left(\delta(x, u)+A^{-j_{2}}\right) \\
& \leqslant A \delta(x, u)+\frac{1}{A+1} \delta(x, y) ;
\end{aligned}
$$

then $\delta(x, u)(A+1) \geqslant \delta(x, y)$, and moreover

$$
\begin{equation*}
\delta(x, z)<A^{-j_{1}} \leqslant A^{-j_{2}}<\frac{1}{A(A+1)} \delta(x, y) . \tag{2.36}
\end{equation*}
$$

Therefore, if we define

$$
E=\{u: \delta(x, y)<(A+1) \delta(x, u) ; A(A+1) \delta(x, z)<\delta(x, y)\}
$$

and

$$
\begin{aligned}
& E_{h}=\left\{u: \frac{A^{h}}{A+1} \delta(x, y)<\delta(x, u) \leqslant \frac{A^{h+1}}{A+1} \delta(x, y)\right. \\
&\left.\delta(x, z)<\frac{1}{A(A+1)} \delta(x, y)\right\}
\end{aligned}
$$

we obtain by Hölder's inequality that the last integral is less than or equal to

$$
\begin{aligned}
\int t_{j_{1}}(x, z) & \left\{\left(\left.\int_{j_{2}}(y, u)\right|^{r^{\prime}} d \mu(\mu)\right)^{1 / r^{\prime}}\right. \\
& \left.\times\left(\int_{E}|k(z, u)-k(x, u)|^{r} d \mu(u)\right)^{1 / r}\right\} d \mu(z) \\
\leqslant & C \int t_{j_{1}}(x, z) A^{j_{2}} A^{-j_{2}\left(1 / r^{\prime}\right)} \\
& \times\left(\sum_{h} \int_{E_{h}}|k(z, u)-k(x, u)|^{r} d \mu(u)\right)^{1 / r} d \mu(z)
\end{aligned}
$$

By (2.5), this is less than

$$
\begin{aligned}
& C \int t_{j_{1}}(x, z) A^{j_{2}} A^{-j_{2}\left(1 / r^{\prime}\right)}\left(\sum_{h}\left(A^{h} \delta(x, y)\right)^{-r / r^{\prime}}\left(\frac{\delta(x, z)}{A^{h} \delta(x, y)}\right)^{\eta r}\right)^{1 / r} d \mu(z) \\
& \leqslant C \int t_{j_{1}}(x, z) A^{j_{2}} A^{-j_{2}\left(1 / r^{\prime}\right)} \delta(x, y)^{-\left(1 / r^{\prime}+\eta\right)} A^{-j_{1} \eta} \\
& \times\left(\sum_{h} A^{-h\left(r / r^{\prime}+\eta r\right)}\right)^{1 / r} d \mu(z) \\
& \leqslant C \frac{A^{j_{2}} A^{-j_{2}\left(1 / r^{\prime}\right)} A^{-j_{1} \eta}}{\delta(x, y)^{1 / r^{\prime}+\eta}} \leqslant C \frac{A^{\eta\left(j_{2}-j_{1}\right)} A^{-j_{2}\left(1 / r^{\prime}+\eta\right)}}{\delta(x, y)^{1 / r^{\prime}+\eta}+A^{-j_{2}\left(1 / r^{\prime}+\eta\right)}}
\end{aligned}
$$

(2.37) Corollary. Under the conditions of Theorem (2.34), if we define

$$
T_{j_{1}, j_{2}} f(x)=\int k_{j_{1}, j_{2}}(x, y) f(y) d y
$$

then $T_{j_{1}, j_{2}}$ is a bounded operator from $L^{2}(X, d \mu)$ into $L^{2}(X, d \mu)$ with norm less than or equal to $A^{\eta\left(j_{2}-j_{1}\right)}$.
(2.38) AppliCation. Assume that $k(x, y)$ is a singular integral kernel $k(x, y)$ satisfying (2.4), (2.5) for $\eta+\varepsilon$ with $\varepsilon>0$ and the following cancellation property:

$$
\begin{align*}
& \text { let } 0<r<R<\infty, \text { then } \\
& \int_{r<\delta(x, y) \leqslant R} k(x, y) d \mu(y)=0, \quad \text { for every } x \in X . \tag{2.39}
\end{align*}
$$

Under these conditions we define for $\phi \in \Lambda_{0}^{\eta}$

$$
\begin{equation*}
T f(x)=\lim _{r \rightarrow 0} \int_{r<\delta(x, y)} k(x, y) \phi(y) d y \tag{2.40}
\end{equation*}
$$

Then the operator T is well defined and maps Λ_{0}^{η} into Λ_{b}^{η}.
In order to prove this result we show that T satisfies the hypotheses of Theorem (2.32) and in addition, $T 1=0$.

Let x be a fixed point in X and $\phi \in A_{0}^{\eta}$ such that $\operatorname{supp} \phi \subset B(z, s)$, $s \leqslant k_{2} \mu(z)$. Then. by (2.39), we have

$$
\begin{aligned}
T \phi(x) & =\lim _{r \rightarrow 0} \int_{r<\delta(x, y)} k(x, y) \phi(y) d y \\
& =\lim _{r \rightarrow 0} \int_{r<\delta(x, y) \leqslant A(\delta(x, z)+s)} k(x, y) \phi(y) d y \\
& =\lim _{r \rightarrow 0} \int_{r<\delta(x, y) \leqslant A(\delta(x, z)+s)} k(x, y)(\phi(y)-\phi(x)) d y \\
& =\int_{\delta(x, y) \leqslant A(\delta(x, z)+s)} k(x, y)(\phi(y)-\phi(x)) d y .
\end{aligned}
$$

The last integral converges since, by Lemma (2.7),

$$
\begin{aligned}
\int_{\delta(x, y)} & \leqslant A(\delta(x, z)+s) \\
& \leqslant\|\phi\|_{\eta} \int_{\delta(x, y) \leqslant A(\delta(x, z)+s)} \tilde{k}(x, y)(\phi(y)-\phi(x)) \mid d y \\
& \leqslant C\|\phi\|_{\eta} A\left(x(x, y)^{\eta} d y\right. \\
& \| s)^{\eta} .
\end{aligned}
$$

Therefore, (2.40) is well defined. Using the same kind of argument, if $(\operatorname{supp} \phi) \cup(\operatorname{supp} \phi) \subset B_{\delta}(z, s)$, we have

$$
\begin{aligned}
|\langle T \phi, \psi\rangle| & =\left|\int\left(\lim _{r \rightarrow 0} \int_{r<\delta(x, y)} k(x, y) \phi(y) d y\right) \psi(x) d x\right| \\
& \leqslant C\|\phi\|_{\eta} \int(\delta(x, z)+s)^{\eta}|\psi(x)| d x \\
& \leqslant C s^{\eta}\|\phi\|_{\eta} \int|\psi(x)| d x \\
& \leqslant C \mu\left(B_{\delta}(z, s)\right)^{1+2 \eta}\|\phi\|_{\eta}\|\psi\|_{\eta}
\end{aligned}
$$

Finally, let us compute $T 1$. Assume that $\psi \in\left\{\Lambda_{0}^{\eta}\right\}_{0}$ with $\operatorname{supp} \psi \subset B=$ $B_{\delta}(z, s)$. Then

$$
\begin{aligned}
&\left\langle T h_{B}, \psi\right\rangle+\left\langle I_{B} 1, \psi\right\rangle \\
&= \int\left(\lim _{r \rightarrow 0} \int_{r<\delta(x, y)} k(x, y) h_{B}(y) d y\right) \psi(x) d x \\
&+\int\left(\int(k(x, y)-k(z, y))\left(1-h_{B}(y)\right) d y\right) \psi(x) d x \\
&=\int\left[\lim _{r \rightarrow 0} \int_{r<\delta(x, y)} k(x, y) h_{B}(y) d y\right. \\
&\left.+\int(k(x, y)-k(z, y))\left(1-h_{B}(y)\right) d y\right\rceil \psi(x) d x .
\end{aligned}
$$

By (2.39), this integral is equal to

$$
\begin{aligned}
& \int\left|\lim _{\substack{r \rightarrow 0 \\
R \rightarrow \infty}} \int_{r<\delta(x, y) \leqslant R} k(z, y)\left(1-h_{B}(y)\right) d y\right| \psi(x) d x \\
& \quad=\int\left|\lim _{\substack{r \rightarrow 0 \\
R \rightarrow \infty}} \int_{r<\delta(x, y) \leqslant R} k(z, y)\left(h_{B}(z)-h_{B}(y)\right) d y\right| \psi(x) d x \\
& \quad=\int\left|\int k(z, y)\left(h_{B}(z)-h_{B}(y)\right) d y\right| \psi(x) d x=0
\end{aligned}
$$

since the innermost integral does not depend on x and $\psi \in\left\{\Lambda_{0}^{\eta}\right\}_{0}$.
A particular case of this application is the following:
Given a homogeneous polynomial $P(x)$ of even degree m, defined on \mathbb{C}^{n} with negative real part for real x, we consider the parabolic differential equation

$$
L|u|=\frac{\partial}{\partial t} u-(-1)^{m / 2} P(D) u=f .
$$

In [J] the following expression was considered in order to obtain a priori estimates:

$$
D_{x}^{p} u(x, t)=\lim _{\varepsilon \rightarrow 0} \int_{0}^{t-\varepsilon} \int_{\mathbb{R}^{n}} s(x-y, t-s) f(y, s) d y d s
$$

where ρ is a multi-index, $|\rho|=\rho_{1}+\cdots+\rho_{n}=m$, and $s(x, t)$ is the ρ th spatial derivative of a fundamental solution of the homogeneous equation $L(U)=0$.

It has been observed in [RT] that a priori estimates can be obtained from

$$
\lim _{\varepsilon \rightarrow 0} \int_{|x-y|+t-s)^{l / m}>\varepsilon} s(x-y, t-s) f(y, s) d y d s .
$$

This limit is viewed as defining a singular integral operator associated to the kernel $k(\bar{x}, \bar{y})=s(x-y, t-s)$, on the space of homogeneous type (X, d, μ) given by

$$
\begin{gathered}
\left.X=\mathbb{R}^{n} x \mid 0, \infty\right), \\
d(\bar{x}, \tilde{y})=d((x, t),(y, s))=|x-y|+|t-s|^{1 / m},
\end{gathered}
$$

and μ the Lebesgue measure on $\left.\mathbb{R}^{n} x \mid 0, \infty\right)$.

In [MT] it is proved that the kernel satisfies (2.4), (2.5) for $\gamma=(m+n)^{-1}$, and (2.35); therefore the a priori estimate

$$
\left\|D_{x}^{p_{n}}\right\|_{\eta} \leqslant C\|L(u)\|_{\eta}
$$

holds for any $0<\eta<(m+n)^{-1}$.

References

[A] H. Aimar, Singular integrals and approximate identities on spaces of homogeneous type, Trans. Amer. Math. Soc. 292 (1985), 135-153.
[DJS] G. David, J. L. Journe, and S. Semmes, Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation, Rev. Mat. Iberoamericana 1 (1985), 1-56.
[J] B. F. Jones, A class of singular integrals, Amer. J. Math. 86 (1964), 441-462.
[KW] D. S. Kurtz and R. L. Wheeden, Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc. 255 (1979), 343-362.
[L] P. G. Lemarie, Continuité sur les espaces de Besov des opérateurs définis par des intégrale singulières, Ann. Inst. Fourier 35, No. 4 (1985), 175-187.
[MS1] R. A. Macías and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. Math. 33 (1979), 33 (1979), 257-270.
[MS2] R. A. Macías and C. Segovia, A decomposition into atoms of distributions on spaces of homogeneous type, Adv. Math. 33 (1979), 271-309.
[MT] R. A. Macías and J. L. Torrea, L^{2} and L^{p} boundedness of singular integrals on non necessarily normalized spaces of homogeneous type, preprint.
[RT] F. J. Rulz and J. L. Torrea, Parabolic differential equations and vector valued Fourier analysis, preprint.

[^0]: * This research has been partially supported by the Ministry of Education and Sciences of Spain (Program de Cooperación con Iberoamérica).

