
Advances in Mathematics 218 (2008) 87–104
www.elsevier.com/locate/aim

Simple homotopy types and finite spaces

Jonathan Ariel Barmak, Elias Gabriel Minian ∗

Departamento de Matemática, FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina

Received 29 November 2006; accepted 28 November 2007

Available online 3 January 2008

Communicated by Mark Hovey

Abstract

We present a new approach to simple homotopy theory of polyhedra using finite topological spaces. We
define the concept of collapse of a finite space and prove that this new notion corresponds exactly to the
concept of a simplicial collapse. More precisely, we show that a collapse X ↘ Y of finite spaces induces a
simplicial collapse K(X) ↘ K(Y ) of their associated simplicial complexes. Moreover, a simplicial collapse
K ↘ L induces a collapse X (K) ↘ X (L) of the associated finite spaces. This establishes a one-to-one cor-
respondence between simple homotopy types of finite simplicial complexes and simple equivalence classes
of finite spaces. We also prove a similar result for maps: We give a complete characterization of the class of
maps between finite spaces which induce simple homotopy equivalences between the associated polyhedra.
This class describes all maps coming from simple homotopy equivalences at the level of complexes. The
advantage of this theory is that the elementary move of finite spaces is much simpler than the elementary
move of simplicial complexes: It consists of removing (or adding) just a single point of the space.
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1. Introduction

J.H.C. Whitehead’s theory of simple homotopy types is inspired by Tietze’s theorem in com-
binatorial group theory, which states that any finite presentation of a group could be deformed
into any other by a finite sequence of elementary moves, which are now called Tietze transfor-
mations. Whitehead translated these algebraic moves into the well-known geometric moves of
elementary collapses and expansions of finite simplicial complexes. His beautiful theory turned
out to be fundamental for the development of piecewise-linear topology: The s-cobordism theo-
rem, Zeeman’s conjecture [18], the applications of the theory in surgery, Milnor’s classical paper
on Whitehead Torsion [10] and the topological invariance of torsion are some of its major uses
and advances.

In this paper we show how to use finite topological spaces to study simple homotopy types.
There is a strong relationship between finite spaces and finite simplicial complexes, which was
discovered by McCord [9]. Explicitly, given a finite simplicial complex K , one can associate
to K a finite T0-space X (K) which corresponds to the poset of simplices of K ordered by inclu-
sion. Moreover, a simplicial map ϕ : K → L gives rise to a continuous map X (ϕ) between the
associated finite spaces. Conversely, one can associate to a finite T0-space X a simplicial com-
plex K(X), whose simplices are the non-empty chains of X, and a weak homotopy equivalence
K(X) → X. This construction is also functorial.

In [2] we showed that finite spaces are very useful for studying homotopy invariants of (gen-
eral) spaces. In fact, in that article we were looking for minimal finite models of some spaces, i.e.
the smallest finite spaces which are weak (homotopy) equivalent to a given space. Finite spaces
are closely related to finite posets, which have become an important tool in algebraic and geo-
metric topology (see for example Quillen’s paper [12], Björner’s paper [3] and Björner, Wachs
and Welker’s [4]). The finite space point of view adds a new dimension to finite posets and al-
lows the development of new and more appropriate techniques based on the combinatorics and
the topology of these objects.

It is easy to prove that if two finite T0-spaces X,Y are homotopy equivalent, their associ-
ated simplicial complexes K(X),K(Y ) are also homotopy equivalent. Furthermore, Osaki [11]
showed that in this case, the latter have the same simple homotopy type. Nevertheless, we no-
ticed that the converse of this result is not true in general: There are finite spaces with different
homotopy types whose associated simplicial complexes have the same simple homotopy type.
Starting from this point, we were looking for the relation that X and Y should satisfy for their
associated complexes to be simple homotopy equivalent. More specifically, we wanted to find
an elementary move in the setting of finite spaces (if it existed) which corresponds exactly to a
simplicial collapse of the associated polyhedra.

We discovered this elementary move when we were looking for a homotopically trivial finite
space (i.e. weak equivalent to a point) which was non-contractible. In order to construct such a
space, we developed a method of reduction, i.e. a method that allows us to reduce a finite space to
a smaller weak equivalent space. This method of reduction together with the homotopically trivial
and non-contractible space (of 11 points) that we found are exhibited in Section 3. Surprisingly,
this method, which consists of removing a weak point of the space (see Definition 3.2), turned
out to be the key to solve the problem of translating simplicial collapses into this setting.

We will say that two finite spaces are simply equivalent if we can obtain one of them from
the other by adding and removing weak points. If Y is obtained from X by only removing weak
points, we say that X collapses to Y and write X ↘ Y . The first main result of this article is the
following
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Theorem 3.10.

(a) Let X and Y be finite T0-spaces. Then, X and Y are simply equivalent if and only if K(X)

and K(Y ) have the same simple homotopy type. Moreover, if X ↘ Y then K(X) ↘K(Y ).
(b) Let K and L be finite simplicial complexes. Then, K and L are simple homotopy equivalent if

and only if X (K) and X (L) are simply equivalent. Moreover, if K ↘ L then X (K) ↘X (L).

In particular, the functors K and X induce a one-to-one correspondence between simple
equivalence classes of finite spaces and simple homotopy types:

{Finite T0-Spaces}/
�↘

K
{Finite Simplicial Complexes}/

�↘X

We are now able to study finite spaces using all the machinery of Whitehead’s simple homo-
topy theory for CW-complexes. But also, what is more important, we can use finite spaces to
strengthen the classical theory. The elementary move in this setting is much simpler to handle
and describe because it consists of adding or removing just one single point.

As an example or application of this theorem, we study collapsible finite spaces and their
relationship with collapsible complexes. We also relate simple types of finite spaces with the
notion of minimal finite model introduced in [2].

In the last section of this article we investigate the class of maps between finite spaces which
induce simple homotopy equivalences between their associated simplicial complexes. To this
end, we introduce the notion of a distinguished map. Similarly to the classical case, the class of
simple equivalences between finite spaces can be generated, in a certain way, by expansions and
a kind of formal homotopy inverses of expansions. Remarkably this class, denoted by S , is also
generated by the distinguished maps. The second main result of the article is the following

Theorem 4.13.

(a) Let f : X → Y be a map between finite T0-spaces. Then f is a simple equivalence if and
only if K(f ) :K(X) → K(Y ) is a simple homotopy equivalence.

(b) Let ϕ : K → L be a simplicial map between finite simplicial complexes. Then ϕ is a simple
homotopy equivalence if and only if X (ϕ) is a simple equivalence.

2. Preliminaries

In this section we recall various results on finite spaces which are needed in Sections 3 and 4.
For more details on finite spaces we refer the reader to [9,14] and P. May’s notes [7,8].

2.1. The correspondence between finite spaces and finite posets

There is a natural relationship between topologies and preorders defined on a finite set X.
This correspondence, which was studied in first place by Alexandroff [1], can be described as
follows. Given a topology τ on X, consider for each point x in X, the intersection Ux of all open
sets containing x. This is clearly an open set for each x and the family B = {Ux,x ∈ X} is a basis
for the topology τ . This basis is called the minimal basis of X for obvious reasons. Associated
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to τ , there is a preorder structure on X (i.e. a reflexive and transitive relation), defined by x � y

if x ∈ Uy . Conversely, if a preorder � on the finite set X is given, we define for each x ∈ X the
subset Ux = {y ∈ X | y � x}. It is not hard to see that these subsets form a basis for a topology
on X, which is the topology associated to the preorder �.

The applications described above define a one-to-one correspondence between topological
structures and preorders on X. Moreover, the T0 separation axiom is equivalent to the antisym-
metry of the associated preorder and therefore, T0-topologies on X correspond to order relations.
Having this equivalence in mind, we will regard finite T0-spaces as finite posets and vice versa.
We will use both structures according to convenience.

It is very useful to represent finite spaces using Hasse diagrams. The Hasse diagram of a finite
T0-space X is a digraph whose vertex set is X and whose edges are the ordered pairs (x, y) such
that x < y and there exists no z ∈ X with x < z < y.

Example 2.1. Consider the space X = {a, b, c, d} whose proper open sets are {a, c, d}, {b, c, d},
{c, d} and {d}. Its Hasse diagram is

a• •b

•c

•d

Instead of representing an edge (x, y) with an arrow, one simply writes y over x.
Sometimes it is convenient to consider the opposite preorder of a finite space X. The space

associated to this preorder will be denoted by Xop. Concretely, the open sets of Xop are the closed
sets of X.

Note that a map f : X → Y between finite spaces is continuous if and only if it is order
preserving. There is also a nice way to describe homotopies. Given two functions f,g : X → Y ,
we will say that f � g if f (x) � g(x) for every x ∈ X. It is not difficult to prove that if f and g

are continuous and f � g, then f is homotopic to g (see [7,14] for more details). In particular,
any finite space with maximum or minimum is contractible.

2.2. Homotopy types

In 1966 R.E. Stong [14] found a combinatorial way to describe conclusively the homotopy
types of finite spaces. He introduced the notions of linear and colinear points and proved that
these two kinds of points generate all homotopy equivalences between finite spaces. Essentially,
two finite T0-spaces X and Y have the same homotopy type if and only if there exists a se-
quence X = X0,X1, . . . ,Xn = Y such that each space is obtained from the previous one by
adding or removing a linear or colinear point. Afterwards, Peter May called these points beat
points [7].

Following Peter May’s language, we will say that a point x of a finite T0-space X is an up
beat point if the set of points which are greater than x has a minimum. On the other hand, x ∈ X

is said to be a down beat point if the set of points below it has a maximum. This is equivalent to
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say that x is an up beat point of Xop. When there is no need to precise if x is an up or a down
beat point, we simply say that x is a beat point.

The next obvious remark plays an important role in Theorem 3.10.

Remark 2.2. If x ∈ X is a beat point, there exists y ∈ X, y �= x, such that any point which is
comparable with x is also comparable with y.

It is not difficult to see that if x ∈ X is a beat point, the inclusion of X � {x} in X is a strong
deformation retract. Therefore, given a finite T0-space X, one can remove beat points, one at the
time, to obtain a strong deformation retract of X with no beat points. Such a subspace is called a
core of X. A finite T0-space with no beat points is called a minimal finite space.

In [14] Stong proves that every homotopy equivalence between minimal finite spaces is a
homeomorphism and therefore, the core of any finite space X is unique up to homeomorphism.
It can be described as the smallest space which is homotopy equivalent to X. Note that a finite
T0-space X is contractible if and only if there exists a sequence X = X0 � X1 � · · · � Xn = ∗,
where Xi+1 is obtained from Xi by removing a beat point. Note also that a point x ∈ X is a beat
point if and only if x is a beat point of Xop. Therefore, X is contractible if and only if Xop is
contractible.

2.3. Finite spaces and simplicial complexes

In contrast to Stong’s combinatorial approach to homotopy theory of finite spaces, M.C. Mc-
Cord [9] investigated their relationship with polyhedra. Finite spaces are not in general subspaces
of Euclidean spaces. Moreover, they do not have in general the homotopy type of any T1 topo-
logical space [2]. Nevertheless, their weak homotopy types describe all weak homotopy types of
compact polyhedra.

Following McCord [9] (cf. also [8]) one can associate to any finite T0-space X a simplicial
complex K(X), whose simplices are the non-empty chains of X (see Fig. 1).

There exists a weak homotopy equivalence from the geometric realization |K(X)| to X, i.e.
a continuous map |K(X)| → X which induces isomorphisms in all homotopy groups. The appli-
cation K is in fact functorial. A continuous map f : X → Y between finite T0-spaces induces a
simplicial map K(f ) : K(X) → K(Y ) which coincides with f on vertices. Besides, it is easy to
see that this construction makes the following diagram commutative

|K(X)| |K(f )| |K(Y )|

X
f

Y.

If two maps f,g : X → Y between finite T0-spaces are homotopic, it can be proved that
the simplicial maps K(f ),K(g) : K(X) → K(Y ) lie in the same contiguity class. In particular
|K(f )| � |K(g)|.

The functor K can be used to find a simplicial complex with the same weak homotopy type of
a given finite space. Recall that two spaces X and Y (non-necessarily finite) are said to be weak
(homotopy) equivalent (or to have the same weak homotopy type) if there exists a sequence
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a•

b• •c

d• •e

Fig. 1. A finite space and its associated simplicial complex.

of spaces X = X1,X2, . . . ,Xn = Y such that for each 1 � i < n there is a weak homotopy

equivalence Xi → Xi+1 or Xi+1 → Xi . We will denote this by X
we≈ Y .

Conversely, given a finite simplicial complex K , one would like to find a finite model of |K|,
i.e. a finite space which is weak equivalent to |K|. With this aim, McCord defined another functor,
denoted by X , that associates to each finite simplicial complex K a finite T0-space X (K), which
is the poset of simplices of K ordered by inclusion. Note that K(X (K)) = K ′ is the barycentric
subdivision of K , which implies that there exists a weak homotopy equivalence |K| → X (K).
The functor X on maps is defined as follows. Given a simplicial map ϕ : K → L, we define
X (ϕ) : X (K) → X (L) by X (ϕ)(S) = ϕ(S) for every simplex S of K . In this case one does not
have a commutative diagram as before, but a diagram that commutes up to homotopy

|K| |ϕ| |L|

X (K)
X (ϕ)

X (L).

By Whitehead theorem, if X, Y are finite T0-spaces, X
we≈ Y if and only if |K(X)| and |K(Y )|

have the same homotopy type. On the other hand, if K and L are finite simplicial complexes, |K|
and |L| are homotopy equivalent if and only if X (K)

we≈X (L).

2.4. Simplicial collapses and expansions

We finish this introductory section by recalling the basic notions on simple homotopy theory
for simplicial complexes. Mainly, we want to fix the notations that we will use in Sections 3
and 4. The standard references for this are Whitehead’s papers [15–17], Milnor’s article [10] and
M.M. Cohen’s book [5].

Let L be a subcomplex of a finite simplicial complex K . There is an elementary simplicial
collapse from K to L if there is a simplex S of K and a vertex a of K not in S such that
K = L ∪ aS and L ∩ aS = aṠ. Here aS denotes the join of a and S and Ṡ denotes the boundary
of S. This is equivalent to say that there are only two simplices S,S′ of K which are not in L

and such that S is a free face of S′. Elementary collapses will be denoted, as usual, K↘e L.
We say that K (simplicially) collapses to L (or that L expands to K) if there exists a sequence

K = K1,K2, . . . ,Kn = L of finite simplicial complexes such that Ki↘e Ki+1 for all i. This is
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denoted by K ↘ L or L ↗ K . Two complexes K and L have the same simple homotopy type
if there is a sequence K = K1,K2, . . . ,Kn = L such that Ki ↘ Ki+1 or Ki ↗ Ki+1 for all i.
Following M.M. Cohen’s notation, we denote this by K�↘L. It is well known that K�↘L if
and only if |K| and |L| are simple homotopy equivalent [17].

3. Simple homotopy types: The first main theorem

The first mathematician who investigated the relationship between finite spaces and simple
homotopy types of polyhedra was T. Osaki [11]. He showed that if x ∈ X is a beat point, K(X)

collapses to K(X � {x}). In particular, if two finite T0-spaces, X and Y are homotopy equivalent,
their associated simplicial complexes, K(X) and K(Y ), have the same simple homotopy type.
However, there exist finite spaces which are not homotopy equivalent but whose associated com-
plexes have the same simple homotopy type. Consider, for instance, the spaces with the following
Hasse diagrams:

• •

• •

• • •

• • •

They are not homotopy equivalent because they are non-homeomorphic minimal finite spaces.
However their associated complexes are triangulations of S1 and therefore, have the same simple
homotopy type.

A more interesting example is the following.

Example 3.1 (The Wallet). Let W be a finite T0-space, whose Hasse diagram is

• • x• •

• • • •

• • •

Fig. 2. W .

This finite space is not contractible since it does not have beat points, but it is not hard to see
that |K(W)| is contractible and therefore, it has the same simple homotopy type as a point. In fact
we will deduce from Proposition 3.3 that W is a homotopically trivial space, i.e. all its homotopy
groups are trivial. This example also shows that Whitehead theorem does not hold in the context
of finite spaces, not even for homotopically trivial spaces.

We introduce now the notion of a weak beat point which generalizes Stong’s definition of
beat points. The following notations will be used in the rest of the paper. Given a point x ∈ X,
we denote by Fx the closure of x in X, i.e. the set of points which are greater than or equal to x.
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We let Ûx = Ux � {x} and F̂x = Fx � {x}. In case we need to specify the ambient space X, we
will write FX

x , ÛX
x and F̂ X

x respectively.

Definition 3.2. Let X be a finite T0-space. We will say that x ∈ X is a weak beat point of X (or
a weak point, for short) if either Ûx is contractible or F̂x is contractible. In the first case we say
that x is a down weak point and in the second, that x is an up weak point.

Note that beat points are in particular weak points, for if x ∈ X is a down beat point, Ûx has a
maximum and if x is an up beat point, F̂x has a minimum. When x is a beat point of X, we have
seen in the previous section that the inclusion i : X � {x} ↪→ X is a homotopy equivalence. This
is not the case if x is just a weak point. However, a slightly weaker result holds.

Proposition 3.3. Let x be a weak point of a finite T0-space X. Then the inclusion map
i : X � {x} ↪→ X is a weak homotopy equivalence.

Proof. We may suppose that x is a down weak point since the other case follows immediately
from this one, considering Xop instead of X. Note that K(Xop) = K(X).

Given y ∈ X, the set i−1(Uy) = Uy � {x} has a maximum if y �= x and is contractible if y = x.
Therefore i|i−1(Uy) : i−1(Uy) → Uy is a weak homotopy equivalence for every y ∈ X. Now the
result follows from Theorem 6 of [9] applied to the basis-like cover given by the minimal basis
of X. �

As an application of the last proposition, we verify that the space W defined above, is a non-
contractible homotopically trivial space. As we pointed out in Example 3.1, W is not contractible
since it is a minimal finite space with more than one point. However, it contains a weak point x

(see Fig. 2), since Ûx is contractible (see Fig. 3).

• •

• • •

Fig. 3. Ûx .

Therefore W is weak homotopy equivalent to W � {x}.
• • •

• • • •

• • •

Fig. 4. W � {x}.
Now it is easy to see that this subspace is contractible, because it does have beat points, and one
can get rid of them one by one.
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Definition 3.4. Let X be a finite T0-space and let Y � X. We say that X collapses to Y by
an elementary collapse (or that Y expands to X by an elementary expansion) if Y is obtained
from X by removing a weak point. We denote X↘e Y or Y↗e X. In general, given two finite
T0-spaces X and Y , we say that X collapses to Y (or Y expands to X) if there is a sequence
X = X1,X2, . . . ,Xn = Y of finite T0-spaces such that for each 1 � i < n, Xi↘e Xi+1. In this
case we write X ↘ Y or Y ↗ X. Two finite T0-spaces X and Y are simply equivalent if there is a
sequence X = X1,X2, . . . ,Xn = Y of finite T0-spaces such that for each 1 � i < n, Xi ↘ Xi+1
or Xi ↗ Xi+1. We denote in this case X�↘Y , following the same notation that we adopted for
simplicial complexes.

In contrast with the classical situation, where a simple homotopy equivalence is a special kind
of homotopy equivalence, homotopy equivalent finite spaces are simply equivalent. It follows
from Proposition 3.3 that simply equivalent finite spaces are weak equivalent.

In order to prove Theorem 3.10, we need some previous results. The first one concerns the
homotopy type of the associated finite space X (K) of a simplicial cone K . Suppose K = aL is
a cone, i.e. K is the join of a simplicial complex L with a vertex a /∈ L. Since |K| is contractible,
it is clear that X (K) is homotopically trivial. The following lemma shows that X (K) is in fact
contractible (compare with [12]).

Lemma 3.5. Let K = aL be a finite cone. Then X (K) is contractible.

Proof. Define f : X (K) → X (K) by f (S) = S ∪ {a}. This function is order-preserving and
therefore continuous.

If we consider the constant map g :X (K) → X (K) that takes all X (K) into {a}, we have that
1X (K) � f � g. This proves that the identity is homotopic to a constant map. �

The following construction is the analogue to the mapping cylinder of general spaces and the
simplicial mapping cylinder of simplicial complexes.

Definition 3.6. Let f : X → Y be a map between finite T0-spaces. We define the non-Hausdorff
mapping cylinder B(f ) as the following finite T0-space. The underlying set is the disjoint union
X 
 Y . We keep the given ordering within X and Y and for x ∈ X, y ∈ Y we set x � y in B(f )

if f (x) � y in Y .

Lemma 3.7. Let f : X → Y be a map between finite T0-spaces such that f −1(Uy) is contractible
for every y ∈ Y . Then B(f ) ↘ i(X) and B(f ) ↘ j (Y ), where i : X ↪→ B(f ) and j : Y ↪→ B(f )

are the canonical inclusions.

Proof. Label all the elements x1, x2, . . . , xn of X in such a way that xr � xs implies r � s and
define Yr = j (Y ) ∪ {i(x1), i(x2), . . . , i(xr )} ⊆ B(f ) for each 0 � r � n. Then

F̂
Yr

i(xr )
= {

j (y)
∣∣ y � f (xr)

}
is homeomorphic to the contractible space FY

f (xr )
. It follows that Yr↘e Yr−1 for 1 � r � n, and

then B(f ) = Yn collapses to j (Y ) = Y0. Notice that we have not yet used the fact that f is
distinguished.
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Now order the elements y1, y2, . . . , ym of Y in such a way that yr � ys implies r � s and
define Xr = i(X) ∪ {j (yr+1), j (yr+2), . . . , j (ym)} ⊆ B(f ) for every 0 � r � m. Then

Û
Xr−1
j (yr )

= {
i(x)

∣∣ f (x) � yr

}
is homeomorphic to f −1(Uyr ), which is contractible by hypothesis. Thus Xr−1↘e Xr for 1 �
r � m and therefore B(f ) = X0 collapses to i(X) = Xm. �

It is well known that any finite simplicial complex K has the same simple homotopy type of
its barycentric subdivision K ′. We prove next an analogous result for finite spaces. Following [6],
the barycentric subdivision of a finite T0-space X is defined by X′ = X (K(X)). Explicitly, X′
consists of the non-empty chains of X ordered by inclusion. It is shown in [6] that there is a weak
homotopy equivalence h : X′ → X which takes each chain C to its maximum max(C).

Proposition 3.8. Let X be a finite T0-space. Then X and X′ are simply equivalent.

Proof. It suffices to show that the map h : X′ → X satisfies the hypothesis of Lemma 3.7.
This is clear since h−1(Ux) = {C | max(C) � x} = X (K(Ux)) = X (xK(Ûx)) is contractible
by Lemma 3.5. �
Lemma 3.9. Let L be a subcomplex of a finite simplicial complex K . Let T be a set of simplices
of K which are not in L, and let a be a vertex of K which is contained in no simplex of T , but
such that aS is a simplex of K for every S ∈ T . Finally, suppose that K = L∪⋃

S∈T {S,aS} (i.e.
the simplices of K are those of L together with the simplices S and aS for every S in T ). Then
L ↗ K .

Proof. Number the elements S1, S2, . . . , Sn of T in such a way that for every i, j with i � j ,
#Si � #Sj . Here #Sk denotes the cardinality of Sk . Define Ki = L∪⋃i

j=1{Sj , aSj } for 0 � i � n.
Let S � Si . If S ∈ T , then S,aS ∈ Ki−1, since #S < #Si . If S /∈ T , then S,aS ∈ L ⊆ Ki−1. This
proves that aSi ∩ Ki−1 = aṠi .

By induction, Ki is a simplicial complex for every i, and Ki−1↗e Ki . Therefore L =
K0 ↗ Kn = K. �

Now we are ready to prove the first main result of this article.

Theorem 3.10.

(a) Let X and Y be finite T0-spaces. Then, X and Y are simply equivalent if and only if K(X)

and K(Y ) have the same simple homotopy type. Moreover, if X ↘ Y then K(X) ↘K(Y ).
(b) Let K and L be finite simplicial complexes. Then, K and L are simple homotopy equivalent if

and only if X (K) and X (L) are simply equivalent. Moreover, if K ↘ L then X (K) ↘X (L).

Proof. Let X be a finite T0-space and let x ∈ X be a weak point. We will show first that
K(X � {x}) ↗ K(X). We may suppose that x is a down weak point since the other case follows
immediately from this one replacing X by Xop. Since Ûx is contractible, there exists a sequence

of spaces Ûx = Xn � Xn−1 � · · · � X1 = {x1}, with Xi = {x1, x2, . . . , xi} and such that xi is a
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beat point of Xi for each i � 2. By Remark 2.2, it follows that there exists yi ∈ Xi−1 for each
2 � i � n with the following property: if z ∈ Xi is comparable with xi , then it is comparable
with yi .

Let Ki ⊆ K(X) be the subcomplex whose simplices are the chains of X � {x} together with
the chains of Fx ∪ Xi ⊆ X. In other words, Ki = K(X � {x}) ∪K(Fx ∪ Xi). We will prove that
K(X � {x}) ↗ K1 ↗ K2 ↗ · · · ↗ Kn = K(X).

In order to prove that K(X�{x}) ↗ K1, we apply Lemma 3.9 with L = K(X�{x}), K = K1,
T = {S ∈ K1 | x ∈ S, x1 /∈ S} and a = x1. Note that x1S ∈ K1 for every S ∈ T since any el-
ement of S is greater than or equal to x and therefore, comparable with x1. In order to see
that Ki−1 ↗ Ki for i � 2, note that the simplices of Ki which are not in Ki−1 are the chains
of Fx ∪ Xi that contain both x and xi . We apply again Lemma 3.9 with L = Ki−1, K = Ki ,
T = {S ∈ Ki | x, xi ∈ S, yi /∈ S} and a = yi . Note that if S ∈ T and y ∈ S, then either y ∈ Xi

and it is comparable with xi or y � x. In any of these cases y is comparable with yi , and there-
fore yiS ∈ Ki . We have then proved that X ↘ Y implies K(X) ↘ K(Y ). In particular, X�↘Y

implies K(X)�↘K(Y ).
Suppose now that K and L are finite simplicial complexes such that K↘e L. Then, there exist

S ∈ K and a vertex a of K not in S such that aS ∈ K , K = L ∪ {S,aS} and aS ∩ L = aṠ. It
follows that S is an up beat point of X (K), and since Û

X (K)�{S}
aS = X (aṠ), by Lemma 3.5, aS

is a down weak point of X (K) � {S}. Therefore X (K)↘e X (K) � {S}↘e X (K) � {S,aS} =
X (L). This proves the first part of (b) and the “moreover” part.

Let X, Y be finite T0-spaces such that K(X)�↘K(Y ). Then X′ = X (K(X))�↘ X (K(Y )) =
Y ′ and by Proposition 3.8, X�↘Y . Finally, if K , L are finite simplicial complexes such that
X (K)�↘X (L), K ′ = K(X (K))�↘K(X (L)) = L′ and therefore K�↘L. This completes the
proof. �

Corollary 3.11. The functors K, X induce a one-to-one correspondence between simple equiva-
lence classes of finite spaces and simple homotopy types of finite simplicial complexes

{Finite T0-Spaces}/
�↘

K
{Finite Simplicial Complexes}/

�↘X

The following diagrams illustrate the whole situation. Here
he� denotes the homotopy equivalence

relation.

X
he� Y X �↘ Y X

we≈ Y

K(X)�↘K(Y ) |K(X)| we≈ |K(Y )| |K(X)| he�|K(Y )|
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X (K)
he�X (L) X (K)�↘X (L) X (K)

we≈X (L)

K�↘L |K| we≈ |L| |K| he�|L|

The Wallet W satisfies W ↘ ∗, however W
he�� ∗. Therefore X�↘Y � X

he�Y . Since

|K| he�|L| � K�↘L, X
we≈ Y � X�↘Y . Note that, if X

we≈ Y and their Whitehead group
Wh(π1(X)) is trivial, then |K(X)| and |K(Y )| are simple homotopy equivalent CW-complexes.
It follows from Theorem 3.10 that X�↘Y . Thus, we have proved

Corollary 3.12. Let X, Y be weak equivalent finite T0-spaces such that Wh(π1(X)) = 0. Then
X�↘Y .

Another immediate consequence of the theorem is the following

Corollary 3.13. Let X, Y be finite T0-spaces. If X ↘ Y , then X′ ↘ Y ′.

Note that from Theorem 3.10 one also deduces the following well-known fact: If K and L are
finite simplicial complexes such that K ↘ L, then K ′ ↘ L′.

One of the most important open results concerning collapsible complexes is Zeeman’s Conjec-
ture [18], which states that if K is a contractible polyhedron of dimension 2, K × I is collapsible.
This conjecture implies the 3-dimensional Poincaré Conjecture (see [18]). The notion of collapsi-
bility for finite spaces is closely related with the analogous notion for simplicial complexes: We
say that a finite T0-space is collapsible if it collapses to a point. Observe that every contractible
finite T0-space is collapsible, however the converse is not true. The Wallet W introduced in Ex-
ample 3.1 is collapsible and non-contractible. Note that if a finite T0-space X is collapsible, its
associated simplicial complex K(X) is also collapsible. Moreover, if K is a collapsible com-
plex, then X (K) is a collapsible finite space. Therefore, if X is a collapsible finite space, its
subdivision X′ is also collapsible.

Let us consider now a compact contractible polyhedron X with the property that any triangu-
lation of X is non-collapsible, for instance the Dunce Hat [18]. Let K be any triangulation of X.
The associated finite space X (K) is homotopically trivial because X is contractible. However,
X (K) is not collapsible since K ′ is not collapsible.

We have therefore the following strict implications in the context of finite spaces:

contractible ⇒ collapsible ⇒ homotopically trivial.

As we pointed out in the previous section, the beat points defined by Stong provide an effec-
tive way of deciding whether two finite spaces are homotopy equivalent. The problem becomes
much harder when one deals with weak homotopy types instead. In [2] we have studied the min-
imal finite models of a given space X, which are the smallest spaces weak equivalent to X. In
that article we characterized the minimal finite models of spheres and finite graphs (finite CW-
complexes of dimension one). We proved that, in general, the minimal finite models of a space
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are not unique. For example
∨3

i=1 S1 has three minimal finite models up to homeomorphism. It
makes sense to formulate the following definition.

Definition 3.14. A minimal simple model of a finite T0-space X is a finite T0-space simply
equivalent to X of minimum cardinality. We will say that a space is a minimal simple model
if it is a minimal simple model of itself.

Clearly, one has the following implications:

minimal finite model ⇒ minimal simple model ⇒ minimal finite space.

Note that if the Whitehead group Wh(π1(X)) is trivial, the converse of the first implication holds.
Therefore, given a finite T0-space X such that Wh(π1(X)) = 0, one could reach any minimal
finite model of X just by adding and removing weak points from X. Elementary collapses and
expansions provide a tool of reduction when the space has trivial Whitehead group. Unfortunately
it is not always possible to obtain a minimal simple model by only removing weak points. For
example, take any homotopically trivial non-collapsible finite space.

Of course there is not uniqueness of minimal simple models. Consider for instance the
space SD3

• •

• • •

and its opposite, which are minimal simple models because they are minimal finite models.
Notice that SD3�↘(SD3)

op and they are not homeomorphic.

4. Simple homotopy equivalences: The second main theorem

In this section we prove the second main result of the article, which relates simple homotopy
equivalences of complexes with simple equivalences between finite spaces. Like in the classical
setting, the class of simple equivalences is generated by the elementary expansions. However, in
the context of finite spaces this class is also generated by the distinguished maps, which play a
key role in this theory.

Recall that a homotopy equivalence f : |K| → |L| between compact polyhedra is a simple
homotopy equivalence if it is homotopic to a composition of a finite sequence of maps |K| →
|K1| → · · · → |Kn| → |L|, each of them an expansion or a homotopy inverse of one [5,13].

We prove first that homotopy equivalences between finite spaces induce simple homotopy
equivalences between the associated polyhedra.

Theorem 4.1. If f : X → Y is a homotopy equivalence between finite T0-spaces, then
|K(f )| : |K(X)| → |K(Y )| is a simple homotopy equivalence.

Proof. Let Xc and Yc be cores of X and Y . Let iX : Xc → X and iY : Yc → Y be the inclusions
and rX : X → Xc , rY : Y → Yc retractions of iX and iY such that iXrX � 1X and iY rY � 1Y .
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Since rY f iX : Xc → Yc is a homotopy equivalence between minimal finite spaces, it
is a homeomorphism. Therefore K(rY f iX) : K(Xc) → K(Yc) is an isomorphism and then
|K(rY f iX)| is a simple homotopy equivalence. Since K(X) ↘K(Xc), |K(iX)| is a simple homo-
topy equivalence, and then the homotopy inverse |K(rX)| is also a simple homotopy equivalence.
Analogously |K(iY )| is a simple homotopy equivalence.

Finally, since f � iY rY f iXrX , it follows that |K(f )| � |K(iY )||K(rY f iX)||K(rX)| is a simple
homotopy equivalence. �

In order to describe the class of simple equivalences, we will use a kind of maps that was
already studied in Lemma 3.7.

Definition 4.2. A map f : X → Y between finite T0-spaces is distinguished if f −1(Uy) is con-
tractible for each y ∈ Y . We denote by D the class of distinguished maps.

Note that by the theorem of McCord [9, Theorem 6], every distinguished map is a weak
homotopy equivalence and therefore induces a homotopy equivalence between the associated
complexes. We will prove in Theorem 4.4 that in fact the induced map is a simple homotopy
equivalence. From the proof of Proposition 3.3, it is clear that if x ∈ X is a down weak point, the
inclusion X � {x} ↪→ X is distinguished.

Remark 4.3. The map h : X′ → X defined by h(C) = max(C), is distinguished by the proof of
Proposition 3.8.

Clearly, homeomorphisms are distinguished. However it is not difficult to show that homotopy
equivalences are not distinguished in general.

Theorem 4.4. Every distinguished map induces a simple homotopy equivalence.

Proof. Suppose f : X → Y is distinguished. Consider the non-Hausdorff mapping cylinder
B(f ) and the canonical inclusions i : X ↪→ B(f ), j : Y ↪→ B(f ).

The following diagram

B(f )

X

i

f

Y

j

does not commute, but i � jf and then i � jf . Therefore |K(i)| � |K(j)||K(f )|. By Lemma 3.7
and Theorem 3.10, |K(i)| and |K(j)| are expansions (composed with isomorphisms) and then,
|K(f )| is a simple homotopy equivalence. �

We have already shown that expansions, homotopy equivalences and distinguished maps in-
duce simple homotopy equivalences at the level of complexes. Note that if f,g,h are three maps
between finite T0-spaces such that fg � h and two of them induce simple homotopy equiva-
lences, then so does the third.
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Definition 4.5. Let C be a class of continuous maps between topological spaces. We say that C is
closed if it satisfies the following homotopy 2-out-of-3 property: For any f,g,h with fg � h, if
two of the three maps are in C, then so is the third.

Definition 4.6. Let C be a class of continuous maps. The class C generated by C is the smallest
closed class containing C.

It is clear that C is always closed under composition and homotopy. The class of simple
homotopy equivalences between CW-complexes is closed and it is generated by the elementary
expansions. Note that every map in the class E of elementary expansions between finite spaces
induces a simple homotopy equivalence at the level of complexes and therefore the same holds
for the maps of E . Contrary to the case of CW-complexes, a map between finite spaces which
induces a simple homotopy equivalence, need not have a homotopy inverse. This is the reason
why the definition of E is not as simple as in the setting of complexes. We will prove that E = D,
the class generated by the distinguished maps.

A map f : X → Y such that f −1(Fy) is contractible for every y, need not be distinguished.
However we will show that f ∈ D. We denote by f op : Xop → Y op the map that coincides with
f in the underlying sets, and let Dop = {f | f op ∈D}.

Lemma 4.7. Dop = D.

Proof. Suppose that f : X → Y lies in Dop. Consider the following commutative diagram

X
hX

f

X′ = (Xop)′
hXop

f ′

Xop

f op

Y
hY

Y ′ = (Y op)′
hYop

Y op.

Here, f ′ denotes the map X (K(f )). Since D satisfies the 2-out-of-3 property and hXop , hY op ,
f op are distinguished by Remark 4.3, f ′ ∈ D. And since hX , hY are distinguished, f ∈ D. This
proves that Dop ⊆ D. The other inclusion follows analogously from the opposite diagram. �
Proposition 4.8. E = D, and this class contains all homotopy equivalences between finite T0-
spaces.

Proof. Every expansion of finite spaces is in E because it is a composition of maps in E .
Let f : X → Y be distinguished. By the proof of Theorem 4.4 there exist expansions (eventu-

ally composed with homeomorphisms) i, j , such that i � jf . Therefore f ∈ E .
If x ∈ X is a down weak point, the inclusion X � {x} ↪→ X is distinguished. If x is an up weak

point, X � {x} ↪→ X lies in D by the previous lemma and therefore E ⊆ D.
Suppose now that f : X → Y is a homotopy equivalence. From the proof of Theorem 4.1,

f iX � iY rY f iX where iX , iY are expansions and rY f iX is a homeomorphism. This implies that
f ∈ E = D. �
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We denote by S = E = D the class of simple equivalences between finite spaces. In the rest
of the paper we study the relationship between simple equivalences of finite spaces and simple
homotopy equivalences of polyhedra.

Lemma 4.9. Let ϕ,ψ : K → L be simplicial maps which lie in the same contiguity class. Then
X (ϕ) � X (ψ).

Proof. Assume that ϕ and ψ are contiguous. Then the map f : X (K) → X (L), defined by
f (S) = ϕ(S) ∪ ψ(S) is well-defined and continuous. Moreover X (ϕ) � f � X (ψ), and then
X (ϕ) � X (ψ). �

Given n ∈ N we denote by Kn the nth barycentric subdivision of K .

Lemma 4.10. Let λ : Kn → K be a simplicial approximation to the identity. Then X (λ) ∈ S .

Proof. It suffices to prove the case n = 1. Suppose λ : K ′ → K is a simplicial approximation
of 1|K|. Then X (λ) : X (K)′ → X (K) is homotopic to hX (K), for if S1 � S2 � · · · � Sm is
a chain of simplices of K , then X (λ)({S1, S2, . . . , Sm}) = {λ(S1), λ(S2), . . . , λ(Sm)} ⊆ Sm =
hX (K)({S1, S2, . . . , Sm}). By Remark 4.3, it follows that X (λ) ∈ S . �
Lemma 4.11. Let ϕ,ψ : K → L be simplicial maps such that |ϕ| � |ψ |. If X (ϕ) ∈ S , then X (ψ)

also lies in S .

Proof. There exists an approximation to the identity λ : Kn → K for some n � 1, such that
ϕλ and ψλ lie in the same contiguity class. By Lemma 4.9, X (ϕ)X (λ) = X (ϕλ) � X (ψλ) =
X (ψ)X (λ). By Lemma 4.10, X (λ) ∈ S and since X (ϕ) ∈ S , it follows that X (ψ) ∈ S . �
Theorem 4.12. Let K0,K1, . . . ,Kn be finite simplicial complexes and let

|K0|
f0 |K1|

f1
. . .

fn−1 |Kn|

be a sequence of continuous maps such that for each 0 � i < n either

(1) fi = |ϕi | where ϕi : Ki → Ki+1 is a simplicial map such that X (ϕi) ∈ S or
(2) fi is a homotopy inverse of a map |ϕi | with ϕi : Ki+1 → Ki a simplicial map such that

X (ϕi) ∈ S .

If ϕ : K0 → Kn is a simplicial map such that |ϕ| � fn−1fn−2 . . . f0, then X (ϕ) ∈ S .

Proof. We may assume that f0 satisfies condition (1). Otherwise we define K̃0 = K0, f̃0 =
|1K0 | : |K̃0| → |K0| and then |ϕ| � fn−1fn−2 . . . f0f̃0.

We proceed by induction on n. If n = 1, |ϕ| � |ϕ0| where X (ϕ0) ∈ S and the result follows
from Lemma 4.11. Suppose now that n � 1 and let K0,K1, . . . ,Kn,Kn+1 be finite simplicial
complexes and fi : |Ki | → |Ki+1| maps satisfying conditions (1) or (2), f0 satisfying condi-
tion (1). Let ϕ : K0 → Kn+1 be a simplicial map such that |ϕ| � fnfn−1 . . . f0. We consider two
cases: fn satisfies condition (1) or fn satisfies condition (2).



J.A. Barmak, E.G. Minian / Advances in Mathematics 218 (2008) 87–104 103
In the first case we define g : |K0| → |Kn| by g = fn−1fn−2 . . . f0. Let g̃ : Km
0 → Kn be a

simplicial approximation to g and let λ : Km
0 → K0 be a simplicial approximation to the identity.

Then |g̃| � g|λ| = fn−1fn−2 . . . f1(f0|λ|) where f0|λ| = |ϕ0λ| and X (ϕ0λ) = X (ϕ0)X (λ) ∈ S
by Lemma 4.10. By induction, X (g̃) ∈ S , and then X (ϕng̃) ∈ S . Since |ϕλ| � fng|λ| � fn|g̃| =
|ϕng̃|, by Lemma 4.11, X (ϕλ) lies in S . Therefore X (ϕ) ∈ S .

In the other case, |ϕnϕ| � fn−1fn−2 . . . f0 and by induction, X (ϕnϕ) ∈ S . Therefore X (ϕ)

also lies in S . �
Theorem 4.13.

(a) Let f : X → Y be a map between finite T0-spaces. Then f is a simple equivalence if and
only if |K(f )| : |K(X)| → |K(Y )| is a simple homotopy equivalence.

(b) Let ϕ : K → L be a simplicial map between finite simplicial complexes. Then |ϕ| is a simple
homotopy equivalence if and only if X (ϕ) is a simple equivalence.

Proof. By definition, if f ∈ S , |K(f )| is a simple homotopy equivalence.
Let ϕ : K → L be a simplicial map such that |ϕ| is a simple homotopy equivalence. Then

there exist finite complexes K = K0,K1, . . . ,Kn = L and maps fi : |Ki | → |Ki+1|, which
are simplicial expansions or homotopy inverses of simplicial expansions, and such that |ϕ| �
fn−1fn−2 . . . f0. By Theorem 3.10, simplicial expansions between complexes induce expansions
between the associated finite spaces and therefore, by Theorem 4.12, X (ϕ) ∈ S .

Suppose now that f : X → Y is a map such that |K(f )| is a simple homotopy equivalence.
Then, f ′ = X (K(f )) : X′ → Y ′ lies in S . Since f hX = hY f ′, f ∈ S .

Finally, if ϕ : K → L is a simplicial map such that X (ϕ) ∈ S , |ϕ′| : |K ′| → |L′| is a simple
homotopy equivalence. Here ϕ′ = K(X (ϕ)) is the barycentric subdivision of ϕ. Let λK : K ′ →
K and λL : L′ → L be simplicial approximations to the identities. Then λLϕ′ and ϕλK are
contiguous. In particular |λL||ϕ′| � |ϕ||λK | and then |ϕ| is a simple homotopy equivalence. �

In the setting of finite spaces one has the following strict inclusions

{homotopy equivalences} � S � {weak equivalences}.

Clearly, if f : X → Y is a weak homotopy equivalence between finite T0-spaces with trivial
Whitehead group, f ∈ S .
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