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Abstract

A fundamental step in the classification of finite-dimensional complex pointed Hopf

algebras is the determination of all finite-dimensional Nichols algebras of braided vector

spaces arising from groups. The most important class of braided vector spaces arising from

groups is the class of braided vector spaces ðCX ; cqÞ; where X is a rack and q is a 2-cocycle on

X with values in C�: Racks and cohomology of racks appeared also in the work of

topologists. This leads us to the study of the structure of racks, their cohomology

groups and the corresponding Nichols algebras. We will show advances in these three

directions. We classify simple racks in group-theoretical terms; we describe projections of

racks in terms of general cocycles; we introduce a general cohomology theory of racks

containing properly the existing ones. We introduce a ‘‘Fourier transform’’ on racks

of certain type; finally, we compute some new examples of finite-dimensional Nichols

algebras.
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0. Introduction

1. This paper is about braided vector spaces arising from pointed Hopf algebras,
and their Nichols algebras. Our general reference for pointed Hopf algebras is
[AS2]. wE SHALL work over the field C of complex numbers; many results
below are valid over more general fields. We denote by GN the group of roots of
unity of C:

2. The determination of all complex finite-dimensional pointed Hopf algebras H

with group of group-likes GðHÞ isomorphic to a fixed finite group G is still
widely open. Even the existence of such Hopf algebras H (apart from the
group algebra CG) is unknown for many finite groups G: If G is abelian,
substantial advances were done via the theory of quantum groups at roots of
unit [AS1]. The results can be adapted to a non-necessarily abelian group G: if
ðaijÞ1pi;jpy is a finite Cartan matrix, g1;y; gy are central elements in G; and
w1;y; wy are multiplicative characters of G; such that wiðgjÞwjðgiÞ ¼ wiðgiÞaij (plus

some technical hypotheses on the orders of wiðgjÞ), then a finite-dimensional

pointed Hopf algebra H with group GðHÞCG can be constructed from this
datum. Besides these, only a small number of examples have appeared in print;
in these examples, G is S3; S4; D4 (see [MS]), S5 (using [FK]), A4 � Z=2
(see [G1]).

3. An important invariant of a pointed Hopf algebra H is its infinitesimal braiding;
this is a braided vector space, that is, a pair ðV ; cÞ; where V is a vector space and
cAAutðV#VÞ is a solution of the braid equation: ðc#idÞðid#cÞðc#idÞ ¼
ðid#cÞðc#idÞðid#cÞ: Let BðVÞ be the Nichols algebra of ðV ; cÞ; see [AS2]. If
dim H is finite, then dimBðVÞ is finite and divides dim H: Conversely, given a
braided vector space ðV ; cÞ; where V is a Yetter–Drinfeld module over the group
algebra CG; then the Radford’s biproduct, or bosonization, H ¼ BðVÞ#CG is a
pointed Hopf algebra with GðHÞCG: Thus, a fundamental problem is to
determine the dimension of the Nichols algebra of a finite-dimensional braided
vector space. We remark that the same braided vector space can arise as the
infinitesimal braiding of pointed Hopf algebras H with very different GðHÞ; as in
the examples with Cartan matrices above. Analogously, there are infinitely many
finite-dimensional pointed Hopf algebras H; with non-isomorphic groups GðHÞ
and the same infinitesimal braiding as, respectively, the examples above related
to the groups S3; S4; D4; S5; A4 � Z=2; and such that they are link-
indecomposable in the sense of [MS,M].

4. It is then more convenient to study in a first stage Nichols algebras of
braided vector spaces of group-type [G1, Definition 1.4.10]. However, there
are strong constraints on a braided vector space of group-type to have a
finite-dimensional Nichols algebra [G1, Lemma 3.1]. Briefly, we shall consider
in this paper the class of braided vector spaces of the form ðCX ; cqÞ;
where ðX ; x Þ is a finite rack, q is a 2-cocycle with values on the multiplicative
group of invertible elements of C; and cq is given by cqði#jÞ ¼ qij i x j#i (see

the precise definitions in the main part of the text). See also the discussion in
[A, Chapter 5].
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We are faced with the following questions: to determine the general structure
of finite racks; to compute their second cohomology groups; and to decide
whether the dimensions of the corresponding Nichols algebras are finite.

5. We now describe the contents of this paper. The notions of ‘‘rack’’ and
‘‘quandle’’, sets provided with a binary operation like the conjugation of a
group, have been considered in the literature, mainly as a way to produce knot
invariants (cf. [B,CJKLS,De,FR,J1,K,Ma]). Section 1 is a short survey of the
theory of racks and quandles, addressed to non-specialists on these structures,
including a variety of examples relevant for this paper.

The determination of all finite racks is a very hard task. There are two
successive approximations to this problem. First, any finite rack is a union of
indecomposable components. However, indecomposable racks can be put
together in many different ways, and the description of all possible ways is
again very difficult. In other words, even the determination of all indecompo-
sable finite racks would not solve the general question.

In Section 2, we describe epimorphisms of racks and quandles by general
cocycles. We then introduce modules over a quandle, resp. a rack, X : We show
that modules over X are in one-to-one correspondence with the abelian group
objects in the category of arrows over X ; if X is indecomposable. Our definition
of modules over X generalizes those in [CES,CENS].

We say that a non-trivial rack is simple if it has no proper quotients. Then any
indecomposable finite rack with cardinality 41 is an extension of a simple rack.
We study simple racks in Section 3. One of our main results is the explicit
classification of all finite simple racks, see Theorems 3.9 and 3.12. The proof is
based on a group-theoretical result kindly communicated to us by Guralnick.

After acceptance of this paper, it became to our attention Joyce’s article [J2],
where results similar to those in Section 3.2 are obtained. However, notice that
our classification in Theorem 3.9 includes more quandles than that of [J2,
Theorem 7(2)]. This is one of the reasons why we decided to leave our results.
The other reason is that, by using a result in [EGS] (which depends upon the
classification of simple groups), we can split the simple quandles into two classes
regarding their cardinality. These classes appear naturally in [J2] also, but the
fact that they are split by cardinality was impossible to prove in 1982.

It is natural to define homology and cohomology theories of racks and
quandles as standard homology and cohomology theories for abelian group
objects in the category of arrows over X [Q]. We propose in Section 4 a complex
that, conjecturally, would be suitable to compute these homology and
cohomology theories. We show that the homology and cohomology theories
known so far (see [CENS,CJKLS,FR,G1]) are special cases of ours. We discuss
as well non-abelian cohomology theories.

A braided vector space of the form ðCY ; cqÞ does not determine the rack Y and
the 2-cocycle q: We provide a general way of constructing two braided vector
spaces ðCY ; cqÞ and ðCỸ; cq̃Þ where the racks Y and Ỹ are not isomorphic in
general, but such that the corresponding Nichols algebras have the same
dimension. In our construction, Y is an extension X �a A; where A is an
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X -module; Ỹ is an extension X �b Â; where Â; the group of characters of A; is also
an X -module. The construction can be thought as a Fourier transform. We show
how to use this construction to obtain new examples of pointed Hopf algebras with
non-abelian group of group-like elements. This is the content of Section 5.

In Section 6, we present several new examples of finite-dimensional Nichols
algebras BðVÞ over finite groups. First, we show that some Nichols algebras can
be computed by reduction to Nichols algebras of diagonal type, via Fourier
transform. Next we use Fourier transform again to compute a Nichols algebra
related to the faces of the cube, starting from a Nichols algebra related to the
transpositions of S4 computed in [MS]. Finally, we establish some relations that
hold in Nichols algebras related to affine racks, and use them to compute Nichols
algebras related to the vertices of the tetrahedron (a result announced in [G1]) and
the affine rack ðZ=5; x 2Þ: Support to our proofs is given by Theorem 6.4 which
gives criteria to insure that a finite dimensional braided Hopf algebra is a Nichols
algebra.

In most of the paper, we shall only consider finite racks, or quandles, or crossed
sets, and omit the word ‘‘finite’’ when designing them, unless explicitly stated.

6. In conclusion, we remark that the next natural step in the classification of finite-
dimensional pointed Hopf algebras is to deal with Nichols algebras of braided
vector spaces arising from simple racks.

1. Preliminaries

1.1. Racks, quandles and crossed sets

Definition 1.1. A rack is a pair ðX ; x Þ where X is a non-empty set and x :
X � X-X is a function, such that

fi : X-X ; fið jÞ ¼ ix j; is a bijection for all iAX ; ð1:1Þ

ix ð j x kÞ ¼ ði x jÞx ðix kÞ 8i; j; kAX : ð1:2Þ

A quandle is a rack ðX ; x Þ which further satisfies

i x i ¼ i; for all iAX : ð1:3Þ

A crossed set is a quandle ðX ; x Þ which further satisfies

j x i ¼ i whenever ix j ¼ j: ð1:4Þ

A morphism of racks is defined in the obvious way: c : ðX ; x Þ-ðY ; x Þ is a
morphism of racks if cðix jÞ ¼ cðiÞxcð jÞ; for all i; jAX : Morphisms of quandles
(resp. crossed sets) are morphisms of racks between quandles (resp. crossed sets).
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In particular, a subrack of a rack ðX ; x Þ is a non-empty subset Y such that
Y xY ¼ Y : If X is a crossed set and Y is a subrack, then, clearly, it is a crossed
subset; same for quandles.

Definition 1.2. If G is a group, any non-empty subset XDG stable under conjugation

by G (i.e, a union of conjugacy classes) is a crossed set with the structure ix j ¼ iji�1:
A crossed set isomorphic to one of these shall be called standard.

A primary goal is to compare arbitrary crossed sets with standard ones.

Definition 1.3. Let ðX ; x Þ be a rack and let SX denote the group of symmetries of
X : By (1.1), we have a map f : X-SX : Let ðX ; x Þ be a rack. We set

Autx ðXÞ :¼ fgASX : gðix jÞ ¼ gðiÞx gð jÞg;

Innx ðX Þ :¼ the subgroup of SX generated by fðXÞ:

By (1.2), Innx ðX Þ is a subgroup of Autx ðX Þ: On the other hand, it is easy to see
that

gfxg�1 ¼ fgðxÞ; 8gAAutx ðXÞ; xAX : ð1:5Þ

Therefore, fðX ÞCAutx ðXÞ is a standard crossed subset, f : X-Autx ðXÞ is a
morphism of racks, and Innx ðXÞ is a normal subgroup of Autx ðXÞ: It is not true in
general that Innx ðX Þ ¼ Autx ðXÞ:

Example 1.4. Let X ¼ f7i;7jg; a standard subset of the group of units of the
quaternions. Then Innx ðX ÞaAutx ðXÞ:

Proof. It is easy to compute Autx ðX Þ and Innx ðXÞ: One sees that Innx ðX Þ ¼
/fi;fjSCC2 � C2 and Autx ðXÞ ¼ /fi;fj; s0S has order 8, where s0ð7iÞ ¼ 7j

and s0ð7jÞ ¼ 7i: &

Another basic group attached to X is the following one:

Definition 1.5 (Brieskorn [B], Fenn and Rourke [FR], Joyce [J1]). Let ðX ; x Þ be a
rack. We define the enveloping group of X as

GX ¼ FðXÞ=/xyx�1 ¼ xx y; x; yAXS;

where FðXÞ denotes the free group generated by X : The assignment x/fx extends
to a group homomorphism pX : GX-Innx ðXÞ; the kernel of pX is called the defect

group of X in the literature and coincides with the subgroup G considered in [So,
Theorem 2.6].
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The name ‘‘enveloping group’’ is justified by the following fact, contained
essentially in [J1]:

Lemma 1.6. The functor X/GX is left adjoint to the forgetful functor H/FH from

the category of groups to that of racks. That is,

HomgroupsðGX ;HÞCHomracksðX ;FHÞ

by natural isomorphisms.

Proof. Easy. &

The definition of rack was proposed a long time ago by Conway and Wraith, see
the historical account in [FR]. Quandles were introduced independently in [J1,Ma]
and studied later in [B] and other articles. They are being extensively studied
nowadays in relation with knot invariants, see [CS] and references therein. In [G1], it
was proposed to consider crossed sets with the normalizing conditions (1.3) and
(1.4); the conditions also appear in [So]. It is worth noting that in most of these
articles the quandle structure is the opposite to the one here (i.e., x*y for our

f�1
y ðxÞ). Racks, quandles and crossed sets are related as follows.

1.1.1. From racks to quandles

We follow [B]. Let X be a rack and let Cx ðXÞ be the centralizer in Autx ðX Þ of
Innx ðXÞ: For cACx ðXÞ; define x c by

a x cb ¼ axcðbÞ ¼ cðax bÞ ¼ cðaÞxcðbÞ: ð1:6Þ

Then ðX ; x cÞ is again a rack; we say that it is conjugated to ðX ; x Þ via c:
Let now i : X-X be given by ax iðaÞ ¼ a; which is well defined by (1.1). Then, by

(1.2),

ax b ¼ ax ðbx iðbÞÞ ¼ ðax bÞx ðax iðbÞÞ;

hence ax iðbÞ ¼ iðax bÞ: In particular, a ¼ iðax aÞ; and i is surjective. Also,

ax ðiðaÞx iðbÞÞ ¼ ðax iðaÞÞx ðax iðbÞÞ ¼ ax ðax iðbÞÞ;

so that, by (1.1), iðaÞx iðbÞ ¼ ax iðbÞ ¼ iðax bÞ: Suppose now that iðaÞ ¼ iðbÞ:
Then

a ¼ ax iðaÞ ¼ iðaÞx iðaÞ ¼ iðbÞx iðbÞ ¼ b:

That is, i is injective, and belongs to Cx ðX Þ: We can then consider ðX ; x iÞ; which
is a quandle.

In conclusion, any rack ðX ; x Þ is conjugated to a unique quandle, called the

quandle associated to ðX ; x Þ. If F : X-Y is a morphism of racks, then F i ¼ iF ;
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hence F is a morphism of the associated quandles. It follows that
Autx ðXÞCAut x iðX Þ: (But Innx ðX Þ and Inn x iðXÞ may be very different).

1.1.2. From quandles to crossed sets

We exhibit a functor Q from the category of finite quandles to that of crossed sets,
which assigns to a quandle X a quotient crossed set QðX Þ with the expected universal
property: any morphism of quandles X-Y is uniquely factorized through QðXÞ
whenever Y is a crossed set. To see this, take on X B as the equivalence relation
generated by

xBx0 if (y s:t: xx y ¼ y and yx x ¼ x0: ð1:7Þ

Then B coincides with the identity relation if and only if X is a crossed set. Take
X1 :¼ X=B: We must see that X1 inherits the structure of a quandle. First, suppose
x; x0; y are as in (1.7). Then x0 x y ¼ ðyx xÞx ðyx yÞ ¼ yx ðxx yÞ ¼ y: Next, for
zAX ; we have

yx ðx0 x zÞ ¼ ðx0 x yÞx ðx0 x zÞ ¼ x0 x ðyx zÞ

¼ ðyx xÞx ðyx zÞ ¼ yx ðxx zÞ;

whence we see that fx ¼ fx0 ; and then fx ¼ fx00 for any x00Bx: Thus, it makes sense
to consider x : ðX=BÞ � X-X : Finally, we have for zAX ;

ðzx xÞx ðzx yÞ ¼ zx ðxx yÞ ¼ ðzx yÞ

and

ðzx yÞx ðzx xÞ ¼ zx ðyx xÞ ¼ ðzx x0Þ:

Then ðzx xÞBðzx x0Þ; and it makes sense to consider x : ðX=BÞ �
ðX=BÞ-ðX=BÞ: If X1 is not a crossed set then take X2 ¼ X1=B; and so on. Since
X is finite, we must eventually arrive to a crossed set. The functoriality and universal
property are clear.

1.2. Basic definitions

We collect now a number of definitions and results; many of them appear already
in previous papers on racks or quandles, see [B,CJKLS,FR,J1].

We shall say that X is trivial if ix j ¼ j for all i; jAX :

Lemma 1.7. Let ðX ; x Þ be a rack, H a group and j : X-H an injective morphism of

racks such that the image is invariant under conjugation in H (thus ðX ; x Þ is actually a

crossed set). Then the map *j : H-SX ; given by *jhðxÞ ¼ j�1ðhjðxÞh�1Þ; is a group

homomorphism and its image is contained in Autx ðX Þ:

Proof. Left to the reader. &
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The assignment X/Innx ðX Þ is not functorial in general; just take iAX with
fiaid; the inclusion figCX does not extend to a morphism Innx ðfigÞ-Innx ðXÞ
commuting with f: But we have:

Lemma 1.8. If p : X-Y is a surjective morphism of racks, then it extends to a group

homomorphism Innx ðpÞ : Innx ðXÞ-Innx ðY Þ:

Proof. Let Innx ðpÞ be defined on fðX Þ by Innx ðpÞðfðxÞÞ ¼ fðpðxÞÞ: It is well
defined and it extends to a morphism of groups since p is surjective. &

We determine now the structure of Innx ðX Þ when X is standard.

Lemma 1.9. Let H be a group and let XCH be a standard subset.

(1) Innx ðX ÞCC=ZðCÞ; where C ¼ /XS is the subgroup of H generated by X ; which

is clearly normal.
(2) If X generates H then Innx ðXÞCH=ZðHÞ:
(3) If H is simple non-abelian and Xaf1g; then H ¼ Innx ðXÞ:

Proof. We prove (2); (1) and (3) will follow. By Lemma 1.7, we have a morphism

c : H-Autx ðXÞ; whose image is Innx ðX Þ: Now, hAkerðcÞ3hxh�1 ¼
x 8xAX3hAZðHÞ: &

Corollary 1.10. Let X be a rack, let H be a group and let c : X-H be a morphism. If

Zð/cðXÞSÞ is trivial, then c extends to a morphism C : Innx ðX Þ-H:

Proof. If Y ¼ cðXÞ; then C : Innx ðXÞ -
Innx ðcÞ

Innx ðY ÞC/YS+H: &

The map f : X-Innx ðX Þ is not injective, in general.

Definition 1.11. We shall say that the rack ðX ; x Þ is faithful when the corresponding
f is injective. Observe that in this case X is a crossed set, since it is standard.

Remark 1.12. If ðX ; x Þ is faithful then the center of Innx ðX Þ is trivial. More
generally, if zAZðInnx ðX ÞÞ; then fzðiÞ ¼ fi; for all iAX :

Definition 1.13. A decomposition of a rack ðX ; x Þ is a disjoint union X ¼ Y,Z

such that Y and Z are both subracks of X : (In particular, both Y and Z are non-
empty). X is decomposable if it admits a decomposition, and indecomposable

otherwise.

The image of an indecomposable rack under a morphism is again in-
decomposable.
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We shall occasionally denote in x j :¼ fn
i ð jÞ; nAZ: The orbit of an element xAX is

the subset

Ox :¼ fi71
s x ði71

s�1 x ðyði71
1 x xÞyÞÞ j i1;y; isAXg:

That is, Ox is the orbit of x under the natural action of the group Innx ðX Þ: (If X is
finite, then Ox ¼ fis x ðis�1 x ðyði1 x xÞyÞÞ j i1;y; isAXg).

Lemma 1.14. Let ðX ; x Þ be a rack, YaX a non-empty subset and Z ¼ X � Y : Then

the following are equivalent:

(1) X ¼ Y,Z is a decomposition of X :
(2) Y xZDZ and Z xYDY :
(3) X xYDY :

Proof. Easy. &

Lemma 1.15. Let ðX ; x Þ be a rack. Then the following are equivalent:

(1) X is indecomposable.
(2) X ¼ Ox for all (for some) xAX :

Proof. Easy. &

Note that a standard crossed set XCH need not be indecomposable, even if it
consists of only one H-orbit. However, it is so when H is simple by Lemma 1.9.

Example 1.16. If XCH is a conjugacy class with two elements, then it is trivial as
crossed set. As another example, take A an abelian group and G the group of
automorphisms of A; let H ¼ AsG; and let XCA be any orbit for the action of G:
Let 1GAG be the unit and consider XCH as Xs1G: Then X is trivial.

Proposition 1.17. Any rack X is the disjoint union of maximal indecomposable

subracks.

Proof. Given YCX a subset, consider

Y 0 ¼ Y,ðY xY Þ,ðY�1 xYÞ ¼ Y,fyx z j y; zAYg,fy�1 x z j y; zAYg:

Then Y 0*Y and any subrack of X containing Y contains Y 0: The subrack generated

by Y is thus
S

nAN Y n; where Y nþ1 ¼ ðY nÞ0 and Y 1 ¼ Y : This is the smallest subrack

of X containing Y :
For YCX ; we say that it is connectable if for any two elements y1; y2AY

there exist ue1
1 ;y; uen

n ; where uiAY and eiAf71g 8i; such that y2 ¼
ue1
1 x ðue2

2 x?ðuen
n x y1ÞÞ (here the intermediate elements uei

i x ðueiþ1

iþ1 x?ðuen
n x y1ÞÞ

may not belong to Y ). Then it is easy to see that if Y is connectable then so is Y 0:
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Hence, for Y connectable, the subrack generated by Y is connectable and, being a
subrack, it is indecomposable. Also, since the union of intersecting indecomposable
subracks is connectable, we see that they generate an indecomposable subrack.
Hence the indecomposable component of xAX ; the union of all indecomposable
subracks containing x; is an indecomposable subrack. Now, X is the disjoint union
of such components. &

Unlike the situation of Lemma 1.14, the indecomposable components may not be
stable under the action of X : The case of two components is more satisfactory
because we can describe how to glue two racks.

Lemma 1.18.

(1) Let Y ;Z be two racks and X ¼ Y0Z be their disjoint union. The following are

equivalent:
(a) Structures of rack on X such that X ¼ Y,Z is a decomposition.

(b) Pairs ðs; tÞ of morphisms of racks s : Y-Autx ðZÞ; t : Z-Autx ðYÞ such

that

yx tzðuÞ ¼ tsyðzÞðyx uÞ; 8y; uAY ; zAZ; i:e:; fytz ¼ tsyðzÞfy; ð1:8Þ

zx syðwÞ ¼ stzðyÞðzxwÞ; 8yAY ; z;wAZ; i:e:; fzsy ¼ stzðyÞfz: ð1:9Þ

(2) Assume that Y and Z are crossed sets and (1.8), (1.9) hold. Then X is a crossed set

exactly when

syðzÞ ¼ z if and only if tzðyÞ ¼ y; 8yAY ; zAZ: ð1:10Þ

Proof. Left to the reader. &

If the conditions of the lemma are satisfied, we shall say that X is the amalgamated

sum of Y and Z: If s and t are trivial, we say that X is the disjoint sum of Y and Z:
Clearly, one can define the disjoint sum of any family of racks (resp. quandles,
crossed sets).

For example, let X be a rack (resp. quandle, crossed set) and set X � 2 ¼ 2X ¼
X � f1; 2g; this is a rack (resp. quandle, crossed set) with ðx; iÞx ðy; jÞ ¼ ðxx y; jÞ;
and 2X ¼ X1,X2 is a decomposition, where Xi ¼ X � fig: Note that fðx;iÞ ¼ fðx;jÞ;

f is not injective. In an analogous way, we define the crossed set nX ; for any positive
integer n: More generally, we have

Example 1.19. Let X ; Y be two racks (resp. quandles, crossed sets). Then X � Y is a
rack (resp. quandle, crossed set), with ðx; yÞx ðu; vÞ ¼ ðxx u; yx vÞ; this is the direct
product of X and Y in the category of racks (resp. quandles, crossed sets).
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Lemma 1.20. Let X ; Y be two racks (resp. quandles, crossed sets). If X � Y is

indecomposable then X and Y are indecomposable. The converse is true if X or Y is a

quandle.

Proof. Since the canonical projections X � Y-X and X � Y-Y are rack
homomorphisms, the first statement is immediate. For the second one, let

ðx1; y1Þ; ðx2; y2ÞAX � Y : As X ;Y are indecomposable, there exist ue1
1 ;y; uen

n ;

v
e0
1

1 ;y; v
e0m
m where uiAX ; vjAY and ei; e0jAf71g 8i; j; such that x2 ¼

ue1
1 x ðue2

2 x?ðuen
n x x1ÞÞ and y2 ¼ v

e0
1

1 x ðve
0
2

2 x?ðve
0
m

m x y1ÞÞ: Suppose X is a quandle.

Adding if necessary at the end of the sequence in Y pairs y1; y�1
1 ; we may suppose

that mXn: Adding if necessary at the end of the sequence in X elements x1; we may
suppose that m ¼ n: Then,

ðx2; y2Þ ¼ ðue1
1 ; v

e0
1

1 Þx ððue2
2 ; v

e0
2

2 Þx?ððuen
n ; ve

0
n

n Þx ðx1; y1ÞÞÞ: &

Let X be a rack, take f : X-Innx ðXÞ as usual. Let us abbreviate Fy :¼ f�1ðyÞ; a
fiber of f: If X is a quandle, any fiber Fy is a trivial subquandle of X :

Lemma 1.21. (1) For x; yAfðXÞ the fibers Fy and Fxx y have the same cardinality.

(2) If X is an indecomposable crossed set, then the fibers of f all have the same

cardinality.

Proof. We claim that ixFyDFfi x y: Indeed, if jAFy; then fi x j ¼ fifjf
�1
i ¼

fiyf
�1
i ¼ fi x y; the claim follows. Similarly, i�1 xFyDFf�1

i x y; hence (1). Now (2)

follows from (1). &

We give finally some definitions of special classes of crossed sets, following
[J1].

Definition 1.22. Let ðX ; x Þ be a quandle. We shall say that X is involutory if f2
x ¼ id

for all xAX : That is, if xx ðxx yÞ ¼ y for all x; yAX :
We shall say that X is abelian if ðxxwÞx ðyx zÞ ¼ ðxx yÞx ðwx zÞ for all

x; y;w; zAX :

1.3. Examples

1.3.1. A rack which is not a quandle

Take X any set and fASX any function. Let xx y ¼ f ðyÞ: This is a rack, and it is
not a quandle if faidX : This rack is called permutation rack.

1.3.2. A quandle which is not a crossed set

Take X ¼ fx;þ;�g; xx7 ¼ 8; f7 ¼ idX :

ARTICLE IN PRESS
N. Andruskiewitsch, M. Gra *na / Advances in Mathematics 178 (2003) 177–243 187



1.3.3. Amalgamated sums

Let Z be a rack; we describe all the amalgamated sums X ¼ Y,Z for Y ¼ f0; 1g
the trivial rack. Denote AutðY Þ ¼ fþ ¼ id;�g: Let s; t be as in Lemma 1.18. First,
Z should decompose as a disjoint union of subracks Z ¼ Zþ,Z�; where tðZ7Þ ¼
7: Second, (1.8) is equivalent to Z7 being stable by s0 and s1; and condition (1.9)
reads

fzs0 ¼ s0fz; fzs1 ¼ s1fz; 8zAZþ;

fzs0 ¼ s1fz; fzs1 ¼ s0fz; 8zAZ�:

Another way to describe the situation is: Z ¼ Zþ,Z� a disjoint union; let Cþ ¼
/fx; xAZþS be the group generated by fZþ ; C� ¼ /fxfy; x; yAZ�S; and let

C ¼ /Cþ;C�S: Then ½s0;C ¼ 1ASZ; s1 ¼ fxs0f
�1
x for any xAZ�: If Z is a

quandle then X is a quandle. If Z is a crossed set then X is a crossed set iff
Zþ ¼ Zs0 ¼ ffixed points of s0g ¼ Zs1 :

1.3.4. Polyhedral crossed sets

Let PCR3 be a regular polyhedron with vertices X ¼ fx1;y; xng and center in 0.
For 1pipn; let Ti be the orthogonal linear map which fixes xi and rotates the
orthogonal plane by an angle of 2p=r with the right-hand rule (pointing the thumb to
xi), where r is the number of edges ending in each vertex. Then ðX ; x Þ defined by
xi x xj ¼ TiðxjÞ is a crossed set. To see this, simply take G as the group of orthogonal

transformations of P with determinant 1 and notice that fT1;y;Tng is a conjugacy
class of G; whose underlying (standard) crossed set is isomorphic to X : It is evident
that Innx ðXÞ is isomorphic to the group generated by fT1;y;Tng: It is clear that to
each polyhedron also corresponds an analogous crossed set given by the faces; it is
isomorphic to the crossed set given by the vertices of the dual polyhedron. It follows
by inspection that the crossed sets of the vertices of the tetrahedron, the octahedron,
the dodecahedron and the icosahedron are indecomposable, while that of the cube
has two components, each of which is isomorphic to the crossed set of the vertices of
the tetrahedron. It is easy to see that in the indecomposable cases the group Innx ðXÞ
coincides with G: See Fig. 1.

1.3.5. Coxeter racks

Let ðV ;/;SÞ be a vector space over a field k; provided with an anisotropic

symmetric bilinear form /;S: Let vx u ¼ u � 2/u;vS
/v;vS v: Then ðV � f0g; x Þ is a

rack, as well as any subset closed for this operation. Particular cases of this are
the root systems of semisimple Lie algebras; the action fa coincides with the
action of waAW ; the Weyl group. To turn this into a quandle one can either quotient

out by the relation vB� v; or take the conjugated quandle ðV � f0g; x iÞ as in 1.1.1

(see (1.6)). It is easy to see that v x i u ¼ 2/u;vS
/v;vS v � u; and then this also is a

crossed set.
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1.3.6. Homogeneous crossed sets

Let G be a finite group and let f :SG-FunðG;SGÞ be the function given by

fs
xðyÞ ¼ sðyx�1Þx; sASG; x; yAG:

Then fs
xf

t
x ¼ fst

x ; i.e., f is a morphism of groups, with the pointwise multiplication

in FunðG;SGÞ:
If, in addition, s : G-G is a group automorphism, then define xx y ¼ fs

xðyÞ ¼
sðyx�1Þx: It is easy to see that this makes ðG; x Þ into a crossed set. For instance, let
us check (1.4):

xx y ¼ y 3 y ¼ sðyx�1Þx 3 yx�1 ¼ sðyx�1Þ 3 xy�1 ¼ sðxy�1Þ 3 yx x ¼ x:

We shall say that ðG; x Þ is a principal homogeneous crossed set, and we will denote it
by ðG; sÞ:

Let t : G-G; tðxÞ ¼ sðx�1Þx; so that xx y ¼ sðyÞ tðxÞ: It is clear that

fx ¼ fz 3 tðxÞ ¼ tðzÞ; ð1:11Þ

whence the fibers as a crossed set are the same as the fibers of t:Note that t is a group
homomorphism if and only if ImðtÞDZðGÞ; the center of G:

More generally, let HCGs be a subgroup, where Gs is the subgroup of elements of

G fixed by s: Then H\G is a crossed set, with HxxHy ¼ Hsðyx�1Þx; it is called a
homogeneous crossed set.

It can be shown that a crossed set X is homogeneous if and only if it is a single
orbit under the action of Autx ðXÞ [J1].

1.3.7. Twisted homogeneous crossed sets

In the same vein, let G be a group and sAAutðGÞ: Take xx y ¼ xsðyx�1Þ: This is a
crossed set which is different, in general, to the previous one. Any orbit of this is
called a twisted homogeneous crossed set.
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Fig. 1. Polyhedral crossed set of the tetrahedron.
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1.3.8. Affine crossed sets

Let A be a finite abelian group and g : A-A an isomorphism of groups. The
corresponding principal homogeneous crossed set is called an affine crossed set, and
denoted by ðA; gÞ: (They are also called Alexander quandles, see e.g. [CJKLS]).

Let f ¼ id� g; then xx y ¼ x þ gðy � xÞ ¼ f ðxÞ þ gðyÞ:
Let us compute the orbits of ðA; gÞ: Since g ¼ id� f ; we have xx y ¼ f ðx � yÞ þ

y: It is clear then by induction that x1 x ðx2 x?ðxn x yÞÞAy þ f ðAÞ; whence Oy ¼
y þ Imð f Þ: In this case, by (1.11), indecomposable is equivalent to being faithful
(since A is finite).

We compute now when two indecomposable affine crossed sets are isomorphic.

Lemma 1.23. Two indecomposable affine crossed sets ðA; gÞ and ðB; hÞ are isomorphic

if and only if there exists a linear isomorphism T : A-B such that Tg ¼ hT :
If this happens, any isomorphism of crossed sets U : ðA; gÞ-ðB; hÞ can be uniquely

written as U ¼ tbT ; where tb : B-B is the translation tbðxÞ ¼ x þ b and T : A-B is

a linear isomorphism such that Tg ¼ hT :

Proof. Let U : ðA; gÞ-ðB; hÞ be an isomorphism of crossed sets. Since the
translations are isomorphisms of crossed sets, we decompose U ¼ tbT ; where T is
an isomorphism of crossed sets with Tð0Þ ¼ 0: Let f ¼ id� g; k ¼ id� h: We have

Tð f ðxÞ þ gðyÞÞ ¼ kðTðxÞÞ þ hðTðyÞÞ:

Letting x ¼ 0; we see that Tg ¼ hT ; letting y ¼ 0; we see that Tf ¼ kT : Hence
Tð f ðxÞ þ gðyÞÞ ¼ Tð f ðxÞÞ þ TðgðyÞÞ: But ðA; gÞ is indecomposable, thus f is
bijective; we conclude that T is linear. &

Remark 1.24. After we finished (the first version of) the paper, Nelson gave in [Ne] a
classification of non-indecomposable affine crossed sets.

Corollary 1.25. If ðA; gÞ is an indecomposable affine crossed set, then Autx ðA; gÞ is

the semidirect product AsAutðAÞg; where AutðAÞg
is the subgroup of all linear

automorphisms of A such that Tg ¼ gT :

Proof. Easy. &

Notice that when ðA; gÞ is not indecomposable, the corollary does not hold. For
instance, if g ¼ id; then f ¼ 0 and ðA; idÞ is trivial, whence Autx ðA; gÞ ¼ SA:

The group Innx ðA; gÞ is usually smaller: it can be easily shown that Innx ðA; gÞ ¼
Im fs/gS: In fact, if aAA then fa ¼ ð f ðaÞ; gÞAAsAutðAÞg: In particular,
Innx ðA; gÞ is solvable.

Remark 1.26. We conclude that a standard crossed set O; where O is a single non-
trivial orbit of a simple non-abelian group, cannot be affine; cf. Lemma 1.9.
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Similarly, let us discuss when a polyhedral crossed set X is affine. The crossed
set of vertices of the tetrahedron is affine, actually isomorphic to ðA ¼ Z2 � Z2;

g ¼ 0
1

1
1

� �
Þ: It can be seen by hand that the crossed set of the vertices of the

cube is not affine. Indeed, it is easy to see that the underlying group A should

be either Z=2� Z=4 or ðZ=2Þ3; but since AutðZ=2� Z=4Þ has order 8 and
Innx ðXÞ has 3-torsion, the case A ¼ Z=2� Z=4 is impossible. Furthermore, one

can exclude the case A ¼ ðZ=2Þ3 by looking at automorphisms gAAutðAÞ s.t.

g3 ¼ id: For the other polyhedral crossed sets, we have that Innx ðXÞ is S4

for the octahedron, and A5 for the icosahedron and the dodecahedron, so that
X is not affine.

As a particular case, let A ¼ Zn ¼ Z=nZ; and let qAZ�
n such that ð1� qÞAZ�

n :
Then we have a structure on Zn given by

ðZn; x qÞ; x x q y ¼ ð1� qÞx þ qy:

This is an indecomposable crossed set, and it can be seen that

ðZn; x qÞCðZn; x q0 Þ3q ¼ q0 (by Lemma 1.23, since AutðZnÞ is abelian).
It is immediate to see that ðZ3; x 2Þ is the only indecomposable crossed set with

three elements; and that any crossed set with three elements is either trivial or

isomorphic to ðZ3; x 2Þ:
It is proved in [EGS] that any indecomposable rack of prime order p is either

isomorphic to ðZp; x qÞ for qAZ�
p or it is isomorphic to ðZp; x Þ with xx y ¼ y þ 1:

Indecomposable racks of order p2 are classified in [G3], in particular it is proved

there that any indecomposable quandle of order p2 is affine.

1.3.9. Affine racks

These are a generalization of affine quandles. Let A be an abelian group,
gAAutðAÞ; fAEndðAÞ be such that fg ¼ gf and f ðid� g � f Þ ¼ 0:We define then on
A the structure of rack given by xx y ¼ f ðxÞ þ gðyÞ: It is clear that A is a quandle iff

f ¼ id� g: Notice that ðid� f Þðidþ g�1f Þ ¼ id; thus id� f is an automorphism of
A: We can consider then the affine quandle ðA; id� f Þ: It is easy to see that this
quandle is the associated quandle for the rack just defined (see (1.6)). As an example,
one can take A ¼ Zp2 ; g ¼ id; f ðxÞ ¼ px:

1.3.10. Amalgamated unions of affine crossed sets

Let ðA; gÞ; ðA; hÞ be two indecomposable affine crossed sets; let f ; k be given by
f ¼ id� g; k ¼ id� h; and let s : ðA; gÞ-Autx ðA; hÞ; t : ðA; hÞ-Autx ðA; gÞ have
the form sx ¼ aðxÞ þ b (i.e., sxðyÞ ¼ aðxÞ þ bðyÞ) and ty ¼ gþ dðyÞ (i.e.,

tyðxÞ ¼ gðxÞ þ dðyÞ) for certain b; gAAutðAÞ; a; dAEndðAÞ: Then by Lemma 1.23

we must have bAðAutðAÞÞh; gAðAutðAÞÞg and one can verify that

ð1:8Þ is equivalent to f � f g� da ¼ 0; db� gd ¼ 0;
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ð1:9Þ is equivalent to k � kb� ad ¼ 0; ag� ha ¼ 0;

ð1:10Þ is equivalent to aðxÞ þ bðyÞ ¼ y3gðxÞ þ dðyÞ ¼ x:

Thus, the disjoint union X ¼ ðA; gÞ0ðA; hÞ is a decomposable crossed set. For

instance, let h ¼ �gf �1 ¼ id� f �1: We define s and t by taking a ¼ id; b ¼ g; g ¼ h;
d ¼ id:

If ðA; gÞ; ðB; hÞ are non-isomorphic indecomposable affine crossed sets, then any
amalgamated sum A,B is not affine. This is a consequence of the following easy
lemma:

Lemma 1.27. If ðA; gÞ is an affine crossed set, then its orbits are isomorphic as crossed

sets.

Proof. Let fx0 ¼ 0;y; xng be a full set of representatives of coclasses in A=Imð f Þ:
The orbits are Imð f Þ; Imð f Þ þ x1;y; Imð f Þ þ xn: Thus, ti : Imð f Þ þ xi-Imð f Þ;
tiðyÞ ¼ y � xi are isomorphisms. &

1.3.11. Involutory crossed sets

This is a discretization of symmetric spaces, which we shall roughly present (see
[J1] for the full explanation). Let S be a set provided with a collection of functions
g : Z-S; called geodesics, such that any two points of S belong to the image of some
of them. Consider the affine crossed set ðZ;�1Þ: Assume that the following condition
holds: if x; yAS belong to two geodesics g and g0; say gðnÞ ¼ g0ðn0Þ ¼ x; gðmÞ ¼
g0ðm0Þ ¼ y; then gðnxmÞ ¼ g0ðn0 xm0Þ: Then we can define on S a unique binary
operation x in such a way that the geodesics respect x ; namely, xx y ¼
gðnxmÞ ¼ gð2n � mÞ for any geodesic g such that gðnÞ ¼ x and gðmÞ ¼ y: This
operation furnishes S with the structure of an involutory crossed set if it maps
geodesics to geodesics; that is, if xx g is a geodesic for any x and any g: It can be
shown that any involutory crossed set arises in this way [J1].

1.3.12. Core crossed sets

Let G be a group. The core of G is the crossed set ðG; x Þ; where xx y ¼ xy�1x:
The core is an involutory crossed set. If G is abelian, its core is the affine crossed set
with g ¼ �id: More generally, one can define the core of a Moufang loop.

1.3.13. The free quandle of a set

Let C be a set and let FðCÞ be the free group generated by C; let Oc denote the
orbit of cAC in FðCÞ: We claim that the standard crossed set XC :¼

S
cAC Oc is the

free quandle on the set C:
For, let c : C-ðX ; x Þ be any function and let C : FðCÞ-Innx ðXÞ be the unique

group homomorphism extending c/fcðcÞ: We define then #c : XC-X by

#cðyÞ ¼ CðuÞðcÞ; if y ¼ ucu�1; cAC:
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The well-definiteness of #c is a consequence of the following facts about orbits in free
groups:

(1) If c; dAC and Oc ¼ Od ; then c ¼ d:
(2) The centralizer of cAC is /cS:

It is not difficult to see that #c is indeed a morphism of quandles extending c; and the
unique one. It is easy to see that XC is also the free crossed set generated by C: It is
not, however, a free rack.

2. Extensions

2.1. Extensions with dynamical cocycle

We now discuss another way of constructing racks (resp. quandles, crossed sets),
generalizing Example 1.19. The proof of the following result is essentially
straightforward.

Lemma 2.1. Let X be a rack and let S be a non-empty set. Let a : X � X-FunðS �
S;SÞ be a function, so that for each i; jAX and s; tAS we have an element aijðs; tÞAS:

We will write aijðsÞ : S-S the function aijðsÞðtÞ ¼ aijðs; tÞ: Then X � S is a rack with

respect to

ði; sÞx ð j; tÞ ¼ ðix j; aijðs; tÞÞ

if and only if the following conditions hold:

aijðsÞ is a bijection; ð2:1Þ

ai;j x kðs; ajkðt; uÞÞ ¼ ai x j;ix kðaijðs; tÞ; aikðs; uÞÞ 8i; j; kAX ; s; t; uAS: ð2:2Þ

in other words, ai;j x kðsÞaj;kðtÞ ¼ aix j;i x kðai;jðs; tÞÞai;kðsÞ:
If X is a quandle, then X � S is a quandle iff further

aiiðs; sÞ ¼ s for all iAX and sAS: ð2:3Þ

If X is a crossed set, then X � S is a crossed set iff further

ajiðt; sÞ ¼ s whenever i x j ¼ j and aijðs; tÞ ¼ t 8i; jAX ; s; tAS: ð2:4Þ

Proof. Easy. &

Definition 2.2. If these conditions hold we say that a is a dynamical cocycle and that
X � S is an extension of X by S; we shall denote it by X �a S: When necessary, we
shall say that a is a rack (resp. quandle, crossed set) dynamical cocycle to specify that
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we require it to satisfy (2.1)+(2.2) (resp. (2.1)+(2.2)+(2.3), (2.1)+(2.2)+
(2.3)+(2.4)). The presence of the parameter s justifies the name of ‘‘dynamical’’.

Assume that X is a quandle and let a be a quandle dynamical cocycle. For iAX

consider sx it :¼ aiiðs; tÞ: It is immediate to see that ðS; x iÞ becomes a quandle
8iAX : Then (2.2), when j ¼ k; says:

aijðs; tx juÞ ¼ aijðs; tÞx ix jaijðs; uÞ; 8s; t; uAS: ð2:5Þ

In other words, the map aijðsÞ is an isomorphism of quandles aijðsÞ : ðS; x jÞ-
(S,x ix j).

The projection X �a S-X is clearly a morphism. Conversely, it turns out that
projections of indecomposable racks (resp. quandles, crossed sets) are always
extensions. Before going over this, we state a technical lemma for further use.

Lemma 2.3. Let ðX ; x Þ be a quandle which is a disjoint union X ¼
‘

iAY Xi such that

there exists %x : Y � Y-Y with Xi xXj ¼ Xi %x j: Suppose that cardðXiÞ ¼
cardðXjÞ 8i; j (this holds for instance if X is indecomposable). Then ðY ; %x Þ is a

quandle.
Furthermore, take S a set such that cardðSÞ ¼ cardðXiÞ and for each iAY set

gi : Xi-S a bijection. Let a : Y � Y-FunðS � S;SÞ be given by aijðs; tÞ :¼
gi %x jðg�1

i ðsÞx g�1
j ðtÞÞ: Then a is a dynamical cocycle and XCY �a S:

Proof. This follows without troubles from Lemma 2.1. &

Remark 2.4. (1) Within the hypotheses of the lemma, if X is indecomposable then so
is Y :

(2) The whole lemma can be stated in terms of racks.
(3) In order to state the lemma in terms of crossed sets, it is necessary to further

assume that ðY ; %x Þ is a crossed set, i.e., that it satisfies (1.4).

Corollary 2.5. Let ðX ; x Þ; ðY ; %x Þ be quandles (resp. racks, crossed sets). Let

f : X-Y be a surjective morphism such that the fibers f �1ðyÞ all have the same

cardinality (this happens for instance if X is indecomposable). Then X is an extension

X ¼ Y �a S:

Proof. Easy. &

Let X be a rack. Let a : X � X-FunðS � S;SÞ be a dynamical cocycle and let
g : X-SS be a function. Define a0 : X � X-FunðS � S;SÞ by

aijðs; tÞ ¼ gix jðaijðg�1
i ðsÞ; g�1

j ðtÞÞÞ; i:e:; a0ijðsÞ ¼ gi x jaijðg�1
i ðsÞÞg�1

j : ð2:6Þ
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Then a0 is a dynamical cocycle and we have an isomorphism of racks
T : ðX �a SÞ-ðX �a0 SÞ given by Tði; sÞ ¼ ði; giðsÞÞ: Conversely, if there is an
isomorphism of racks T : ðX �a SÞ-ðX �a0 SÞ which commutes with the canonical
projection X � S-X then there exists g : X-SS such that a and a0 are related
as in (2.6).

Definition 2.6. We say that a and a0 are cohomologous if and only if there exists
g : X-SS such that a and a0 are related as in (2.6).

Example 2.7. Let Y be the crossed set given by the faces of the cube. Then Y is the
disjoint union of the subsets made out of the pairs of opposite faces. This union
satisfies the hypotheses of Lemma 2.3 and, being indecomposable, the quotient

ðX ; %x Þ is isomorphic to the crossed set ðZ3; x 2Þ:

Example 2.8. Let ðA; gÞ be an affine crossed set. Suppose that there exists a subgroup
BDA invariant by g; let %g be the induced automorphism of A=B: Consider the affine

crossed set ðA=B; %gÞ; the projection ðA; gÞ-p ðA=B; %gÞ is a morphism of crossed sets.

Corollary 2.5 applies and we see that A is an extension of A=B:

More examples appear in [CHNS] by means of group extensions. They are used to
color twist-spun knots.

2.2. Extensions with constant cocycle

Let X be a rack. Let b : X � X-SS: We say that b is a constant rack cocycle if

bi;j x kbj;k ¼ bix j;ix kbi;k: ð2:7Þ

If X is a quandle, we say that b is a constant quandle cocycle if it further satisfies

bii ¼ id; 8iAX : ð2:8Þ

If X is a crossed set, we say that b is a constant crossed set cocycle if it further satisfies

bji ¼ id whenever i x j ¼ j and bijðtÞ ¼ t for some tAS: ð2:9Þ

We have then an extension X �b S :¼ X �a S; taking aijðs; tÞ ¼ bijðtÞ: Note that x i

is trivial for all i; and the fiber Ffði;sÞ ¼ Ffi
� S:

We shall say in this case that the extension is non-abelian. It is clear that an
extension X �a S is non-abelian if and only if aijðsÞ ¼ aijðtÞ 8s; tAS; 8i; jAX :

Definition 2.9. Let g : X-SS be a function and let b be a constant cocycle. Define

b0 : X � X-SS by

bij ¼ gix j bij g
�1
j :
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Then we have an isomorphism T : ðX �b SÞ-ðX �b0 SÞ given by Tði; sÞ ¼ ði; giðsÞÞ:
In this case, we shall say that b and b0 are cohomologous.

The use of the word ‘‘cocycle’’ is not only suggested by its analogy with group
2-cocycles, which describe extensions: there is a general definition of abelian
cohomology (see Section 4) for which this is its natural non-abelian counterpart. The
use of the word ‘‘cocycle’’ in the phrase ‘‘dynamical cocycle’’ stands on the same
basis.

For X �b S a non-abelian extension, let c : X-Innx ðX �b SÞ be given by ci ¼
fði;tÞ for an arbitrary tAS; that is, cið j; sÞ ¼ ði x j; bijðsÞÞ: Then cðXÞ generates

Innx ðX �b SÞ: Let Hi ¼ fhAInnx ðX �b SÞ j hði; sÞAi � S 8sASg:

Definition 2.10. Assume that X is indecomposable. A constant cocycle b : X �
X-SS is transitive if for some iAX ; the group Hi acts transitively on i � S: Note
that this definition does not depend on i:

We have seen that all the fibers of an indecomposable rack (resp. quandle, crossed
set) have the same cardinality; we provide now a precise description of an
indecomposable rack (resp. quandle, crossed set). Recall the map f : Y-Innx ðYÞ
from Definition 1.3.

Proposition 2.11. Let Y be an indecomposable rack (resp. quandle, crossed set), let

X ¼ fðYÞ and let S be a set with the cardinality of the fibers of f: Then we have an

isomorphism T : Y-X �b S for some transitive constant cocycle b:
Conversely, a non-abelian extension X �b S is indecomposable if and only if X is

indecomposable and b is transitive.

Proof. Choose, for each xAX ; a bijection gx : Fx ¼ f�1ðxÞ-S: We have then a
bijection T : Y-X � S; TðiÞ ¼ ðfi; gfi

ðiÞÞ: We define, for x; yAX and

sAS; bxyðsÞ ¼ gxx yðT�1ðx; sÞxT�1ðy; sÞÞ: It is straightforward to see that b is a

transitive constant cocycle and that T is an isomorphism.
The second part is clear. &

Example 2.12. Let X ¼ f1; 2; 3; 4g be the tetrahedral crossed set defined in Section
1.3 and let S ¼ fa; bg: Then SS ¼ fid; sgCC2 ¼ f71g: There is a non-trivial 2-
cocycle b : X � X-S given by

bxy ¼ 1 if x ¼ 1 or y ¼ 1 or x ¼ y;

bxy ¼ �1 otherwise:

(

Let c : X-Innx ðX �b SÞ be as in the paragraph preceding Definition 2.10. It is

clear that cð1Þcð2ÞAH4; and cð1Þcð2Þð4� aÞ ¼ cð1Þð3� bÞ ¼ 4� b; whence b is
transitive and X �b S is indecomposable.
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A way to construct cocycles, which resembles the classification of Yetter–Drinfeld
modules over group algebras, is the following one:

Example 2.13. Let X be an indecomposable ( finite) rack, x0AX a fixed element,
G ¼ Innx ðXÞ; and let H ¼ Gx0

be the subgroup of the inner isomorphisms which fix

x0: Let Z be a ( finite) set and r : H-SZ a group homomorphism. There is then a
bijection G=H-X given by g/gðx0Þ: Fix a (set theoretical) section s : X-G; i.e.,
sðxÞ � x0 ¼ x 8xAX : This determines, for each x; yAX ; an element tx;yAH such that

fxsðyÞ ¼ sðxx yÞtx;y: To see this, we compute

sðxx yÞ�1fxsðyÞ � x0 ¼ sðxx yÞ�1fx � y ¼ sðxx yÞ�1 � ðxx yÞ ¼ x0:

Then it is straightforward to see that b : X � X-SZ; bx;y ¼ rðtx;yÞ is a constant

cocycle. Explicitly, this defines an extension X �b Z as

ðx; zÞx ðx0; z0Þ ¼ ðxx x0; rðsðxx x0Þ�1fxsðx0ÞÞðz0ÞÞ:

Even if X is a quandle, this is not a quandle in general, since it does not necessarily
satisfy (2.8). Let us compute when (2.8) is satisfied (suppose that X is a quandle)

bx;x ¼ rðsðxx xÞ�1fxsðxÞÞ ¼ rðsðxÞ�1fxsðxÞÞ ¼ rðfsðxÞ�1�xÞ ¼ rðfx0
Þ:

Then X �b Z is a quandle iff X is a quandle and rðfx0
Þ ¼ 1ASZ:

Remark 2.14. It is easy to see that for polyhedral quandles and affine quandles the
group H is generated by fx0

; and then we cannot construct non-trivial quandle

extensions in this way.

2.3. Modules over a rack

Throughout this subsection, R will denote the category of racks. All the
constructions below can be performed in the category Q of quandles, or in the
category CrS of crossed sets.

It is clear that finite direct products exist in the category R; cf. Example 1.19. Then
we can consider group objects in R; they are determined by the following
Proposition.

Proposition 2.15. A group object in R is given by a triple ðG; s; tÞ; where G is a group,
sAAutðGÞ; t : G-ZðGÞ is a group homomorphism, and

* st ¼ ts;
* sðxÞx�1tðxÞAkerðtÞ 8xAG:

The rack structure is given by xx y ¼ tðxÞsðyÞ:
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A group object ðG; s; tÞ in R is a quandle iff tðxÞ ¼ sðxÞ�1
x 8xAG; iff it is an

homogeneous quandle (hence crossed set).
A group object ðG; s; tÞ in R is abelian iff it is an affine rack.

Proof. The second and third statements follow from the first without difficulties
(notice that the image of t lies in the center).

A group object in R is a triple ðG; �; x Þ with ðG; �Þ a group and ðG; x Þ a rack,
such that the multiplication � is a morphism of racks. Let s; t : G-G; sðxÞ ¼
1x x; tðxÞ ¼ xx 1: Then both s and t are group homomorphisms since sðxyÞ ¼
1x ðxyÞ ¼ ð1 � 1Þx ðx � yÞ ¼ ð1x xÞ � ð1x yÞ ¼ sðxÞsðyÞ; and analogously for t:
Furthermore,

xx y ¼ð1 � xÞx ðy � 1Þ ¼ ð1x yÞ � ðxx 1Þ ¼ sðyÞtðxÞ

¼ ðxx 1Þ � ð1x yÞ ¼ tðxÞsðyÞ:

Then, s must be an isomorphism, and then tðxÞ is central 8x: Last,

xx ðyx zÞ ¼ tðxÞ � stðyÞ � s2ðzÞ;

ðxx yÞx ðxx zÞ ¼ t2ðxÞ � tsðyÞ � stðxÞ � s2ðzÞ;

whence tðxÞ � stðyÞ ¼ t2ðxÞ � tsðyÞ � stðxÞ: Taking x ¼ 1 we see that st ¼ ts: Taking

y ¼ 1 we see that tðtðxÞsðxÞx�1Þ ¼ 1: The converse is not difficult. &

Let us now consider the ‘‘comma category’’ RjX over a fixed rack X ; recall that the
objects of RjX are the maps f : Y-X and the arrows between f : Y-X and

g : Z-X are the commutative triangles, i.e., the maps h : Y-Z such that gh ¼ f :
Since equalizers exist in R (they are just the set-theoretical equalizers with the

induced x ), R has finite limits. It follows that RjX also has finite limits. We are

willing to determine all abelian group objects in RjX :

Definition 2.16. Let X be a rack and let A be an abelian group. A structure of X-

module on A consists of the following data:

* a family ðZijÞi;jAX of automorphisms of A; and
* a family ðtijÞi;jAX of endomorphisms of A;

such that the following axioms hold:

Zi;j x k Zj;k ¼ Zi x j;ix k Zi;k; ð2:10Þ

ti;j x k ¼ Zix j;i x k ti;k þ tix j;ix k ti;j; ð2:11Þ

Zi;j x k tj;k ¼ ti x j;ix k Zi;j: ð2:12Þ
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If X is a quandle, a quandle structure of X-module on A is a structure of X -module
which further satisfies

Zii þ tii ¼ id: ð2:13Þ

If X is a crossed set, a crossed set structure of X-module on A is a quandle structure of
X -module which further satisfies

if i x j ¼ j and ðid� ZijÞðtÞ ¼ tijðsÞ for some s; t then ðid� ZjiÞðsÞ ¼ tjiðtÞ: ð2:14Þ

An X -module is an abelian group A provided with a structure of X -module.

Remark 2.17. Taking j ¼ k in (2.10), one gets in presence of (1.3) the suggestive
equality:

Zi;jZj;j ¼ Zi x j;ix jZi;j: ð2:15Þ

Let A be an X -module. We define aij : A � A-A by

aijðs; tÞ :¼ ZijðtÞ þ tijðsÞ:

Theorem 2.18. (1) aij is a dynamical cocycle, hence we can form the rack Y ¼ X �a A:

(2) The canonical projection p : Y-X is an abelian group in RjX :
(3) If p : Y-X is an abelian group in RjX and X is indecomposable, then

YCX �a A for some X-module A and p is the canonical projection.
(4) If X is a quandle and A is a quandle X-module, then the preceding statements are

true in the category of quandles. Same for crossed sets.

Proof.

(1) Condition (2.1) follows since Zij is an automorphism. The left-hand side of (2.2)

is

Zi;j x kZj;kðuÞ þ Zi;j x ktj;kðtÞ þ ti;j x kðsÞ

and the right-hand side of (2.2) is

Zix j;ix kZi;kðuÞ þ tix j;ix kZi;jðtÞ þ Zix j;i x kti;kðsÞ þ tix j;i x kti;jðsÞ:

Thus, (2.2) follows from (2.10)–(2.12).
(2) Let s : X-X �a A; sðiÞ ¼ ði; 0Þ; iAX ; it is clearly a morphism of racks. Let

þ : Y �X Y-Y ; ði; aÞ þ ði; bÞ ¼ ði; a þ bÞ; it is clearly a morphism in RjX : It is
not difficult to verify that ðY ;þÞ is an abelian group in RjX with identity

element s:
(3) Let p : Y-X be an abelian group in RjX ; X an arbitrary rack. We have

morphisms in RjX þ : Y �X Y-Y and s : X-Y satisfying the axioms of
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abelian group. In particular, we have:
(a) The existence of s implies that p is surjective; if iAX ; Ai :¼ p�1ðiÞ is an

abelian group with identity sðiÞ:
(b) ða þ bÞx ðc þ dÞ ¼ ðax cÞ þ ðbx dÞAAix j; if a; bAAi; c; dAAj:

(c) The map hij : Aj-Aix j; hij the restriction of fsðiÞ; is an isomorphism of

abelian groups, for all i; jAX :

Assume now that X is indecomposable. Then all the abelian groups Ai are
isomorphic, by (3c). Fix an abelian group A provided with group isomorphisms
gi : Ai-A: Define aij : A � A-A; i; jAX ; by

aijðs; tÞ :¼ gix jðg�1
i ðsÞx g�1

j ðtÞÞ:

We claim that aijðs; tÞ ¼ ZijðtÞ þ tijðsÞ; where ZijðtÞ ¼ aijð0; tÞ and tijðsÞ ¼ aijðs; 0Þ; this
follows without difficulty from (3b), since the g’s are linear. Now, ZijðtÞ ¼ gi x jhijg�1

j

is a linear automorphism, whereas tij is linear by (3b). We need finally to verify

conditions (2.10)–(2.12); this is done reversing the arguments in part (1).

(4) Condition (2.3) amounts in the present case to (2.13), whereas condition (2.4)
amounts to (2.14). &

Remark 2.19. Assume now that X is a non-indecomposable quandle and keep the
notation of the proof. Then Ai is a subquandle of Y ; indeed an abelian group in Q:
By Proposition 2.15, Ai is affine, with respect to some giAAutðAiÞ:

Example 2.20. If ðA; gÞ is an affine crossed set, then it is an X -module over any rack
X with Zij ¼ g; tij ¼ f ¼ id� g: We shall say that A is a trivial X -module if g ¼ id;

that is when it is trivial as crossed set.

Example 2.21. Let X be a trivial quandle, let ðAiÞiAX be a family of affine quandles

and let Y be the disjoint sum of the Ai’s, with the evident projection Y-X : Then
Y-X is an abelian group in QjX which is not an extension of X by any X -module, if

the Ai’s are not isomorphic.

We now show that the category of X -modules, X an indecomposable quandle or
rack, is abelian with enough projectives. Actually, it is equivalent to the category of
modules over a suitable algebra.

Definition 2.22. The rack algebra of a rack ðX ; x Þ is the Z-algebra ZfXg presented

by generators ðZ71
ij Þi;jAX and ðtijÞi;jAX ; with relations ZijZ

�1
ij ¼ Z�1

ij Zij ¼ 1; (2.10),

(2.11) and (2.12).
The quandle algebra of a quandle ðX ; x Þ is the Z-algebra ZðXÞ presented by

generators ðZ71
ij Þi;jAX and ðtijÞi;jAX ; with relations ZijZ

�1
ij ¼ Z�1

ij Zij ¼ 1; (2.10), (2.11),

(2.12) and (2.13).
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It is evident that the category of X -modules, X a rack, is equivalent to the category
of modules over ZfXg; therefore, it is abelian with enough injective and projective
objects. Same for quandle X -modules and ZðXÞ:

The algebra ZðXÞ is augmented with augmentation e : ZðXÞ-Z; eðZijÞ ¼ 1;

eðtijÞ ¼ 0: The algebra ZfXg is also augmented, composing e with the projection

ZfXg-ZðXÞ:
There are various interesting quotients of the algebra ZðXÞ:
First, the quotient of ZðXÞ by the ideal generated by the tij ’s is isomorphic to the

group algebra of the group LðX Þ presented by generators ðZijÞi;jAX with relations

(2.10).
Next, consider the following elements of the group algebra ZGX (see Definition

1.5):

Zij :¼ i; tij :¼ 1� ði x jÞ: ð2:16Þ

It is not difficult to see that this defines a surjective algebra homomorphism
ZðX Þ-ZGX ; in particular any GX -module has a natural structure of X -module.

Definition 2.23. If X is a crossed set and M is any GX -module then M also satisfies
the extra condition (2.14). We shall say that M is a restricted X-module.

Definition 2.24. Let X be a rack and let A be an X -module. A 2-cocycle on X with

values in A is a collection ðkijÞi;jAX of elements in A such that

Zi;j x kðkjkÞ þ ki;j x k ¼ Zix j;ix kðkikÞ þ ti x j;ix kðkijÞ þ ki x j;ix k 8i; j; kAX : ð2:17Þ

Two 2-cocycles k and k0 are cohomologous iff (f : X-A such that

k0ij ¼ kij � Zijð f ð jÞÞ þ f ðix jÞ � tijð f ðiÞÞ: ð2:18Þ

As remarked earlier, the reader can find in Section 4 a complex which justifies
these names.

Proposition 2.25.

(1) Let X be a rack and consider functions Z : X � X-AutðAÞ; t : X �
X-EndðAÞ; k : X � X-A: Let us define a map a by

aijða; bÞ ¼ ZijðbÞ þ tijðaÞ þ kij ; a; bAA: ð2:19Þ

Then the following conditions are equivalent:
(a) a is a dynamical cocycle.
(b) Z; t define a structure of an X-module on A and ðkijÞ is a 2-cocycle, i.e., it

satisfies (2.17).
(2) Let k and k0 be 2-cocycles and let a; a0 be their respective dynamical cocycles. If k

and k0 are cohomologous then a and a0 are cohomologous.
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Proof. Straightforward. For the second part, if f is as in (2.18), then take g : X-SA

by giðsÞ ¼ f ðiÞ þ s: It is easy to verify (2.6). &

Definition 2.26. If X is a rack, A is an X -module and ðkijÞi;jAX is a 2-cocycle on X

with values in A; then the extension X �a A; where a is given by (2.19), is called an
affine module over X. By abuse of notation, this extension will be denoted X �k A:

All the constructions and results in this section are valid more generally over a
fixed commutative ring R:

3. Simple racks

3.1. Faithful indecomposable crossed sets

To classify indecomposable racks, we may first consider faithful indecomposable
crossed sets (recall that a faithful rack is necessarily a crossed set), and next compute
all possible extensions.

Proposition 3.1. Let X be an indecomposable finite rack. Then X is isomorphic to an

extension Y �a S; where Y is a faithful indecomposable crossed set. Furthermore, Y

can be chosen uniquely with the property that any surjection X-Z of racks, with Z

faithful, factorizes through Y.

Proof. Consider the sequence X-X1 :¼ fðXÞ-X2 :¼ fðX1Þy : Since X is finite
the sequence stabilizes, say at Y ¼ Xn; which is clearly faithful and indecomposable.
By Corollary 2.5, XCY �a S: Now let c : X-Z be a surjection, with Z faithful. By
Lemma 1.8, it gives a surjection c1 : X1-Z; and so on. &

Faithful indecomposable crossed sets can be characterized as follows.

Proposition 3.2.

(1) If X is a faithful indecomposable crossed set, then there exists a group G and an

injective morphism of crossed sets j : X-G; such that ZðGÞ is trivial and jðX Þ is

a single orbit generating G as a group. Furthermore, G is unique up to

isomorphisms with these conditions.
(2) If X is a single orbit in a group G with ZðGÞ trivial and X generates G, then X is a

faithful indecomposable crossed set.
(3) There is an equivalence of categories between

(a) The category of faithful indecomposable crossed sets, with surjective

morphisms.
(b) The category of pairs ðG;OÞ; where G is a group with trivial center and O is an

orbit generating G; a morphism f : ðG;OÞ-ðK ;UÞ is a group homomorphism

f : G-K such that f ðOÞ ¼ U:
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Proof.

(1) Existence: take G ¼ Innx ðX Þ; uniqueness: by Lemma 1.9.
(2) Immediate.
(3) Follows from (1), (2) and Lemma 1.8. &

We shall say that a projection (¼surjective homomorphism) p : X-Y of racks is
trivial if card Y is either 1 or card X :

Definition 3.3. A rack X is simple if it is not trivial and any projection of racks
p : X-Y is trivial.

A decomposable rack has a projection onto the trivial rack with two elements; it
follows that a simple rack is indecomposable.

Let X be a simple rack with n elements; then fðX Þ has only one point, or f is a
bijection. In the first case, X is a permutation rack defined by a cycle of length n; in
the second case X is a crossed set (and necessarily card X42).

It is not difficult to see that a permutation rack with n elements defined by a cycle
of length n is simple if and only if n is prime.

Proposition 3.4. Let X be an indecomposable faithful crossed set, which corresponds to a

pair ðG;OÞ: Then X is simple if and only if any quotient of G different from G is cyclic.

Proof. Assume X is simple. If p : G-K is an epimorphism of groups, then either
pðXÞ is a single point or pjX is bijective. If pðXÞ is a point, this point generates K;

and then K must be cyclic. If pjX is bijective, take hAkerðpÞ; then hxh�1 ¼ x 8xAX ;
whence hAZðGÞ: This means that p is bijective.

Assume now that any non-trivial quotient of G is cyclic. Let p : X-Y be a
surjective morphism of crossed sets, then GCInnx ðXÞ-Innx ðY Þ is an epimorph-
ism, so that either it is a bijection (then XCY ) or Innx ðY Þ is cyclic. In the last case,
fðY Þ; being indecomposable, is a point; hence Y ; being also indecomposable, is a
point. &

Example 3.5. Let X be the crossed set of the faces of the cube. We can realize X as
the orbit given by 4-cycles inside S4; since X is faithful and Innx ðX ÞCS4:
Considering the quotient S4-S4=KCS3; where K is the Klein subgroup, we see
that X is not simple. Indeed, this gives X as the same extension Z3 �a Z2 as in
Example 2.7. Also, if X 0 is the orbit given by the six transpositions in S4; we see
taking the same quotient S4=K that X 0 is an extension Z3 �a0 Z2:

Example 3.6. Since the only proper quotient of Sn ðnX5) is cyclic, we see that if X is
a non-trivial orbit of Sn then either

* X generates Sn and then it is simple, or
* XCAn:
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If XCAn; then it might fail to be an orbit in An: This would happen if and only
if the centralizers of the elements of X lie inside An (because the order of the
orbits is the ratio between the order of the group and the order of the centralizers).
In this case, thus, X decomposes as a union of two orbits, which are isomorphic
via conjugation by any element in Sn\An (an example of this case arises for
n ¼ 5 and X the 5-cycles). On the other hand, if the centralizers of the elements of X

are not included in An then X is indecomposable, and hence simple by the
proposition.

3.2. Classification of simple racks

We characterize now simple racks in group-theoretical terms. We first classify
finite groups G such that ZðGÞ is trivial and G=N is cyclic for any normal non-trivial
subgroup of G: We are grateful to R. Guralnick for help in this question.

To fix notation, if G acts on H; we put HsG the semidirect product with
structure ðh; gÞðh0; g0Þ ¼ ðhðg � h0Þ; gg0Þ:

Theorem 3.7 (Guralnick). Let G be a non-trivial finite group such that ZðGÞ is trivial

and G=H is cyclic for any normal non-trivial subgroup H. Then there are a simple

group L, a positive integer t and a finite cyclic group C ¼ /xS in AutðNÞ; where

N :¼ Lt ¼ L �?� L (t times), such that one of the following possibilities hold.
(1) L is abelian, so that N is elementary abelian of order pt; x is not trivial and it acts

irreducibly on N. Furthermore, GCNsC:
(2) L is simple non-abelian, G ¼ NCCðNsCÞ=ZðNsCÞ and x acts by

x � ðl1;y; ltÞ ¼ ðyðltÞ; l1;y; lt�1Þ ð3:1Þ

for some yAAutðLÞ:
Conversely, all the groups in (1) or (2) have the desired properties. Furthermore, two

groups in either of the lists are isomorphic if and only if the corresponding groups L are

isomorphic, the corresponding integers t are equal and the corresponding automorph-

isms x define, up to conjugation, the same element OutðNÞ ¼ AutðNÞ=IntðNÞ:

Before proving the Theorem, we observe that:

* If G is a group which is not abelian and such that G=H is abelian for any normal
non-trivial subgroup H; then G has a unique minimal non-trivial normal
subgroup, namely ½G;G:

* If G is a finite group such that G=N is cyclic for any normal non-trivial subgroup
N; then ‘‘ZðGÞ is trivial’’ is equivalent to ‘‘G is non-abelian’’.

* Case (2) covers the case where G is non-abelian simple (t ¼ 1; C is trivial).
* In case (1), identify L with Fp and the automorphism x with TAGLðt; FpÞ: Then x

acts irreducibly if and only if the characteristic polynomial of T is irreducible,
hence equals the minimal polynomial of T : In this case, if n ¼ ord x and if d

divides n; 1adan; then kerðTd � idÞ ¼ 0; this implies that N � 0 is a union of
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copies of C: Hence jCj divides pt � 1: Clearly, we may assume that x acts by the
companion matrix of an irreducible polynomial in Fp½X  of degree t:

* Let N; C be two groups, C acting on N by group automorphisms. The

center ZðNsCÞ is given by ZðNsCÞ ¼ fðn; cÞ j cAZðCÞ; nANC ; c � m ¼
n�1mn 8mANg: In particular, if p : ðNsCÞ-ðNsCÞ=ZðNsCÞ is the projec-

tion then pðNÞCN=ZðNÞC :

Proof. Step I: We first show that the groups described in the Theorem have the
desired properties.

Let L; N; C; G be as in case (1). By the irreducibility of the action of C; being x

non-trivial, we see that ZðGÞ is trivial. We claim that any non-trivial normal
subgroup M of G contains N: For, M-N is either trivial or M-N ¼ N: If aAG and
mAM; mae; then ½a;mAM-½G;GDM-N: Thus M-N is non-trivial, since
otherwise mAZðGÞ; proving the claim. Hence any non-trivial quotient of G; being a
quotient of C; is cyclic, and G satisfies the requirements of the theorem.

Let now L; N; C; G be as in case (2). We identify N with its image in G: We
claim next that ZðGÞ is trivial. Let ðn; cÞANsC be such that pðn; cÞ ¼ ncAZðGÞ: It
is easy to see that nANx and c acts on N by conjugation by n�1: Thus
ðn; cÞAZðNsCÞ and nc ¼ 1 in G:

Any normal subgroup P of N is of the form
Q

jAJ Lj; for some subset J of

f1;y; tg; if P is also x-stable then either P is trivial or equals N; because x permutes
the copies of L: As in case (1), we conclude that any non-trivial normal subgroup M

of G contains N; hence any non-trivial quotient of G is cyclic.
Step II: Let G be a finite group with a minimal normal non-trivial subgroup N;

and assume that G=N is cyclic. Then there exists a simple subgroup L of N; and a
subgroup C ¼ /xS of G such that N ¼ L �?� L ðt copies) and G ¼ NC:

Indeed, let xAG be such that its class generates G=N and let C be the subgroup
generated by x; then G ¼ NC: Let L be a minimal normal non-trivial subgroup of N:

Then Li :¼ xi�1Lx�iþ1 is also a minimal normal subgroup of N and ðL1?LjÞ-Ljþ1

is either trivial or Ljþ1: Let t be the smallest positive integer such that

ðL1?LtÞ-Ltþ1 ¼ Ltþ1: Then L1?LtCL1 �?� Lt is a normal subgroup of N

and is stable by conjugation by x; so it is normal in G and therefore equal to N: If S

is a normal subgroup of L; then SCS � 1�?� 1 is normal in N; and by
minimality of L; L is simple.

Step III: We now show that any group G satisfying the requirements of the
theorem is either as in case (1) or (2). We may assume that G is not simple. We keep
the notation of Step II and assume then that ZðGÞ is trivial and that any proper
quotient of G is cyclic.

If N is abelian then N-CDZðGÞ is trivial, whence G ¼ NsC: Furthermore, x

should act irreducibly since any subgroup PCN which is x-stable is normal. Hence,
G is as in case (1).

If L is not abelian and t41 we have, for i41; ½xLtx
�1;Li ¼ x½Lt;Li�1x�1 ¼ 1;

from where x sends Lt isomorphically to L1; and x acts as in case (2) of the
statement. Consider the projection p : NsC-G: Since ZðGÞ is trivial,
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ZðNsCÞCkerðpÞ: Let now ðn; cÞAkerðpÞ; then c ¼ n�1 in G; whence c acts by

conjugation on N by n�1: Thus ðn; cÞAZðNsCÞ; and we are done.
Step IV: We prove the uniqueness statement. N is unique since, as remarked,

N ¼ ½G;G: Now, L is unique by Jordan–Hölder, then t is unique. Since x was
chosen modulo N; x and x0 give rise to the same group if they coincide in OutðNÞ:
Furthermore, since any automorphism G-G must leave N invariant, x is unique up
to conjugation in OutðNÞ: &

Remark 3.8. Let N; C be finite groups with C acting on N by group
automorphisms, and let G ¼ NsC: If ðm; zÞ; ðn; yÞAG; then

ðm; zÞðn; yÞðm; zÞ�1 ¼ ðmðz � nÞðzyz�1 � m�1Þ; zyz�1Þ:

When C is abelian, it follows that

Cðn; yÞ ¼
[
zAC

Oyðz � nÞ � fyg; ð3:2Þ

where C stands for conjugacy class, and Oy for the orbit under the action of N on

itself given by

m,yn :¼ mnðy � m�1Þ: ð3:3Þ

Note that
S

zA/yS Oyðz � nÞ ¼ OyðnÞ: For, n�1,yn ¼ y � n; and the claim follows.

Note also that m,yn is not the same as mx n:

We can now state the classification of simple racks. We begin by the following
important theorem. The proof uses [EGS, Lemma 8], which is in turn based on the
classification of simple finite groups.

Theorem 3.9. Let ðX ; x Þ be a simple crossed set and let p be a prime number. Then

the following are equivalent.

(1) X has pt elements, for some tAN:
(2) Innx ðX Þ is solvable.
(3) Innx ðX Þ is as in case (1) of Theorem 3.7.
(4) X is an affine crossed set ðFt

p;TÞ where TAGLðt; FpÞ acts irreducibly.

Proof.

ð1 ) 2Þ This is [EGS, Lemma 8].
ð2 ) 3Þ This is Proposition 3.4 plus Theorem 3.7.
ð3 ) 4Þ This follows from the preceding discussion. Since fðX ÞCInnx ðX Þ is a

conjugacy class, by (3.2) we have fðXÞ ¼ N � fxrg for some r: Since
fðXÞ generates Innx ðX Þ; r must be coprime to the order of x: Take
y ¼ xr and call TAGLðt; FpÞ the action of y (which is also irreducible).
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We have

ðm; yÞx ðn; yÞ ¼ ðm; yÞðn; yÞðm; yÞ�1 ¼ ðTn þ ðid� TÞm; yÞ:

ð4 ) 1Þ Clear. &

Corollary 3.10. The classification of simple racks with pt elements, for some prime

number p and tAN; is the following:

(1) Affine crossed sets ðFt
p;TÞ; where T is the companion matrix of an irreducible

monic polynomial in Fp½X  different from X � 1 and X.

(2) The permutation rack corresponding to the cycle ð1; 2;y; pÞ if t ¼ 1:

Proof. Easy. &

Remark 3.11. Keep the notation of Step III in Theorem 3.7. If L is abelian, then x

does not necessarily send Lt to L1; as wrongly stated in [J2, Lemma 4(ii)]. This
explains why in [J2, Lemma 6], only irreducible polynomials of the form X t � a

appear; while, as we have seen, this restriction is not necessary.

Theorem 3.12. Let ðX ; x Þ be a crossed set whose cardinality is divisible by at least

two different primes. Then the following are equivalent.

(1) X is simple.
(2) There exist a non-abelian simple group L, a positive integer t and xAAutðLtÞ;

where x acts by (3.1) for some yAAutðLÞ; such that X ¼ OxðnÞ is an orbit of the

action ,x of N ¼ Lt on itself as in (3.3) (nam�1 if t ¼ 1 and x is inner,

xðpÞ ¼ mpm�1). Furthermore, L and t are unique, and x only depends on its

conjugacy class in OutðLtÞ: If m; pAX then

mx p ¼ mxðpm�1Þ: ð3:4Þ

Proof.

ð1 ) 2Þ By Theorem 3.9, Innx ðXÞ is as in case (2) of Theorem 3.7. Therefore, we
have L; t and xAAutðLtÞ: Let G ¼ ðNsCÞ=ZðNsCÞC Innx ðX Þ;
and G̃ ¼ NsC and let p : G̃-G be the projection. If Cðn; yÞ is a

conjugacy class in G̃ then pðCðn; yÞÞ is a conjugacy class in G; and it is
not difficult to see that p :Cðn; yÞ-pðCðn; yÞÞ is an isomorphism of
crossed sets. Then X has the structure of Cðn; yÞ given by (3.3). Now,
nyAG must be such that pðCðn; yÞÞ generates G: Since the subgroup
generated by pðCðn; yÞÞ is invariant, we know by the proof of Theorem
3.7 that it is either trivial or it contains N: It is trivial if

ðn; yÞAZðNsCÞ; i.e., if t ¼ 1 and y acts on N by conjugation by n�1;
thus we must exclude this case. This case excluded, y must generate C;
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and then we can take x ¼ y in the proof of Theorem 3.7, whence X is as
in (3.4).

ð2 ) 1Þ Similar. &

We restate the previous results as: if X is a simple rack then either

(1) jX j ¼ p a prime, XCFp a permutation rack, xx y ¼ y þ 1:

(2) jX j ¼ pt; XCðFt
p;TÞ is affine, as in Corollary 3.10(1).

(3) jX j is divisible by at least two different primes, and X is twisted homogeneous, as
in Theorem 3.12.

Compare this with [J2, Theorem 7].

The simple crossed sets in (2) can be alternatively described as ðX ; x aÞ where

XCFq; q ¼ pt; aAFq generates Fq over Fp and x x ay ¼ ð1� aÞx þ ay: It follows

easily that AutðX ; x aÞ is the semidirect product FqsF�q :

It is natural to ask how many different simple crossed sets with q ¼ pt

elements there are. This is a well-known elementary result. For, if IðnÞ
denotes the number of monic irreducible polynomials in Fp½X  with degree n; thenP

djn dIðdÞ ¼ pn: Thus

IðnÞ ¼ 1

n

X
djn

m
n

d


 �
pd ;

where m is the Möbius function.

4. Cohomology

4.1. Abelian cohomology

Let ðX ; x Þ be a rack. We define now a cohomology theory which contains all
cohomology theories of racks known so far. We think that this cohomology can be
computed by some cohomology theory in the category of modules over X :

For a sequence of elements ðx1; x2;yxnÞAX n we will denote

½x1?xn ¼ x1 x ðx2 x ð?ðxn�1 x xnÞ?ÞÞ:

Notice that if ion then

½x1?xix ½x1? #xi?xn ¼ ½x1?xn:

Definition 4.1. Let *AX be a fixed element (which is important only in degrees 0 and
1). Let ZfXg be the rack algebra of X (see Definition 2.22) and let, for

nX0; CnðX Þ ¼ ZfXgX n; i.e., the free left ZfXg-module with basis X n ðX 0 ¼ f*g

ARTICLE IN PRESS
N. Andruskiewitsch, M. Gra *na / Advances in Mathematics 178 (2003) 177–243208



is a singleton). Let @ ¼ @n : Cnþ1ðXÞ-CnðX Þ be the ZfXg-linear map defined on the
basis by

For nX1:

@ðx1;y; xnþ1Þ

¼
Xn

i¼1

ð�1ÞiZ½x1?xi ;½x1? #xi?xnþ1ðx1;y; #xi;y; xnþ1Þ

�
Xn

i¼1

ð�1Þiðx1;y; xi�1; xi x xiþ1;y; xi x xnþ1Þ

� ð�1Þnþ1t½x1?xn;½x1?xn�1xnþ1ðx1;y; xnÞ:

For n ¼ 0:

@ðxÞ ¼ �t
* ;*

�1 x x* : ð4:1Þ

Lemma 4.2. ðC�ðXÞ; @Þ is a complex.

Proof. We decompose @n ¼
Pnþ1

i¼1 ð�1Þi@i
n; where

@i
nðx1;y; xnþ1Þ ¼ Z½x1?xi ;½x1?x̂i?xnþ1ðx1;y; x̂i;y; xnþ1Þ

� ðx1;y; xi�1; xi x xiþ1;y; xi x xnþ1Þ for ipn

@nþ1
n ðx1;y; xnþ1Þ ¼ �t½x1?xn;½x1?xn�1xnþ1ðx1;y; xnÞ for i ¼ n þ 141;

@1
0ðxÞ ¼ �t

* ;*
�1 x x * for n ¼ 0:

Then, it is straightforward to verify that

@i
n�1@

j
n ¼ @

j�1
n�1@

i
n for 1piojpn þ 1;

and thus

@n�1@n ¼
X

1piojpnþ1

ð�1Þiþj@i@j þ
X

1pjpipn

ð�1Þiþj@i@j

¼
X

1piojpnþ1

ð�1Þiþj@j�1@i þ
X

1pjpipn

ð�1Þiþj@i@j ¼ 0: &

We are now in position to define rack (co)homology.

Definition 4.3. Let X be a rack. Let A ¼ ðA; Z; tÞ be a left X -module and take

CnðX ;AÞ ¼ HomZfXgðCnðXÞ;AÞ; and the differential d ¼ @n: By the lemma, this is a
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cochain complex. We define then

HnðX ;AÞ ¼ HnðC�ðX ;AÞÞ:

If A is a right X -module (i.e., a right ZfXg-module), we define

CnðX ;AÞ ¼ A#ZfXgCnðXÞ and HnðX ;AÞ ¼ HnðC�ðX ;AÞÞ:

Remark 4.4. Low degree cohomology can be interpreted in terms of extensions: a
2-cocycle is the same as a function k : X � X-A which satisfies (2.17); and two
2-cocycles are cohomologous if and only if they satisfy (2.18).

Remark 4.5. Let X be a quandle; replacing the rack algebra ZfXg by the quandle
algebra ZðX Þ in Definition 4.1 one can define quandle cohomology theory that has
as a particular case the quandle cohomology H�

QðX ;AÞ in [CJKLS].

We consider now particular cases of this definition.

4.2. Cohomology with coefficients in an abelian group

Recall that ZfXg has an augmentation ZfXg-Z given by Zi;j/1; ti;j/0: Then,

any abelian group A becomes an X -module. The complexes C�ðX ;AÞ; C�ðX ;AÞ
coincide thus with previous complexes found in the literature (see for instance
[CJKLS,FR,G1]). We recall them for later use:

CnðX ;AÞ ¼ A#ZZX n; CnðX ;AÞ ¼ HomZðZX n;AÞCFunðX n;AÞ

@ða#ðx1;y; xnþ1ÞÞ ¼
Xn

i¼1

ð�1Þiða#ðx1;y; x̂i;y; xnþ1Þ

� a#ðx1;y;xi�1; xi x xiþ1;y; xi x xnþ1ÞÞ

df ðx1;y; xnþ1Þ ¼
Xn

i¼1

ð�1Þið f ðx1;y; x̂i;y; xnþ1Þ

� f ðx1;y; xi�1; xi x xiþ1;y; xi x xnþ1ÞÞ: ð4:2Þ

Here, @0 : C1ðX ;AÞ-C0ðX ;AÞ vanishes. Notice that H1ðX ;AÞ ¼ Ap0ðXÞ; where
p0ðX Þ is the set of Innx ðXÞ-orbits in X :

Example 4.6. Let ðX ; x Þ be a crossed set, let A be an abelian group (denoted
additively), and let f be a 2-cocycle with values in A: Let B : X � X-SA be given by

BijðaÞ ¼ a þ fij ; i; jAX ; aAA:
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Then B is a constant rack cocycle (i.e., it satisfies (2.7)). It is a constant quandle
cocycle (i.e., it satisfies (2.8)) iff fii ¼ 0 8iAX : The definition of ‘‘quandle cocycle’’ is
thus seen to be the same for these kind of extensions as that in [CJKLS]. The cocycle
Bij satisfies (2.9) iff fji ¼ 0 whenever ix j ¼ j and fij ¼ 0:

Lemma 4.7. H2ðX ;GÞCHomðH2ðX ;ZÞ;GÞ for any abelian group G:

Proof. This follows from the ‘‘Universal Coefficient Theorem’’ since H1ðX ;ZÞ is free
(cf. [CJKS, Proposition 3.4]). &

Remark 4.8. Some second and third cohomology groups are computed in [LN];
some others in [Mo]. See [O] for tables of the computations done so far. In

particular, we excerpt from [Mo] that H2ðX ;ZÞ ¼ Z if X ¼ ðZ=p; x qÞ where p is a

prime and 1aqAðZ=pÞ�:

Lemma 4.9. Let X be the disjoint sum of the indecomposable crossed sets Y and Z:

Then H2ðX ;ZÞCH2ðY ;ZÞ"H2ðZ;ZÞ"Z2:

Proof. Let fAZ2ðX ;ZÞ; i.e., fj;k þ fi;j x k ¼ fix j;i x k þ fi;k 8i; j; kAX : Then one has

fi;j x k ¼ fi;k ¼ ftx i;k for all i; tAY ; j; kAZ; since the actions of Z on Y and viceversa

are trivial. Therefore, fi;k ¼ ft;j for all i; tAY ; j; kAZ; being both Y and Z

indecomposable. We conclude that Z2ðX ;ZÞCZ2ðY ;ZÞ"Z2ðZ;ZÞ"Z2: Now, if
g : X-Z then dg is really only a function on ðY � YÞ,ðZ � ZÞ; and the claim
follows. &

4.3. Restricted modules

Consider a restricted X -module A; see Definition 2.23. This is the same as a
GX -module, GX the enveloping group of X : We get then the complex
ðC�ðX ;AÞ; dÞCðFunðX �;AÞ; dÞ; with

df ðx1;y; xnþ1Þ ¼
Xn

i¼1

ð�1Þi½x1?xif ðx1;y; x̂i;y; xnþ1Þ

�
Xn

i¼1

ð�1Þi
f ðx1;y; xi�1; xi x xiþ1;y; xi x xnþ1Þ

� ð�1Þnþ1ð1� ½x1?xnþ1Þf ðx1;y; xnÞ:

As a particular case, suppose that X is any quandle and ðA; gÞ is an affine crossed set.

Take L ¼ Z½T ;T�1 the ring of Laurent polynomials. Then A becomes a L-module,
and a fortiori a GX module by x � a ¼ Ta ¼ gðaÞ 8xAX ; aAA (since for any quandle
there is a unique algebra map ZGX-L; x/T). Then Zi;j acts by g and ti;j acts by

f ¼ 1� g on A: We get in this way the complex considered in [CES].
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Lemma 4.10. If X is a rack and A is an abelian group with trivial action then

H2ðX ;AÞ ¼ H1ðGX ;FunðX ;AÞÞ:

Here the space FunðX ;AÞ of all functions from X to A is a trivial left GX -module; the

right action is given by ð f � xÞðzÞ ¼ f ðxx zÞ:

Proof (Sketch, see [EG]). Consider the map F : X-GX ; x/x: Let
f : GX-FunðX ;AÞ and take rð f Þ : X � X-A; where rð f Þðx; yÞ ¼ f ðFðxÞÞðyÞ: It is
easy to see that this map gives a morphism H1ðGX ;FunðX ;AÞÞ-H2ðX ;AÞ: On the

other hand, let gAZ2ðX ;AÞ: This gives a map g0 : X-FunðX ;AÞ; g0ðxÞðyÞ ¼ gðx; yÞ:
Recall that for a right GX -module M; a map p : GX-M is a 1-cocycle iff the map
#p : GX-GXrM given by z/ðz; pðzÞÞ is a homomorphism of groups. Denote M ¼
FunðX ;AÞ: We have a map xg : X-GXrM given by xgðxÞ ¼ ðx; g0ðxÞÞ: So we need

to show that xg extends to a homomorphism GX-GXrM: But the group GX is

generated by X with relations xy ¼ ðxx yÞx: Thus, we only need to check that the
xgðxÞ’s satisfy the same relations, and it is straightforward to see that this is

equivalent to dg ¼ 0: Now, it is easy to see that this map is the inverse of r: &

4.4. Non-principal cohomology

Let X ¼ TiAI Xi be a decomposition of the rack X : It is possible then to
decompose the complex C�ðX ;ZÞ of (4.2) into a direct sum

CnðX Þ ¼ "
iAI

Ci
nðXÞ; Ci

nðXÞ ¼ ZðX n�1 � XiÞCZX n�1#ZXi:

For each iAI ; let Ai be an abelian group. We denote by AI this collection. Then we
take C�ðX ;AI Þ the complex

C�ðX ;AI Þ ¼ "
iAI

HomZðCi
nðXÞ;AiÞ

Notice that if A ¼ Ai 8iAI ; then this complex is the same as C�ðX ;AÞ in (4.2).

4.5. Non-abelian cohomology

Let ðX ; x Þ be a rack and let G be a group. We define:

H1ðX ;GÞ ¼ Z1ðX ;GÞ ¼ fg : X-G j gix j ¼ gj; 8i; jAXg; ð4:3Þ

Z2ðX ;GÞ ¼ fb :X � X-G j bi;j x kbj;k ¼ bi x j;ix kbi;k 8i; j; kAXg: ð4:4Þ

The elements of Z2ðX ;GÞ shall be called non-abelian 2-cocycles with co-

efficients in G: If b; *b : X � X-G we set bB *b if and only if there exists g : X-G
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such that

*bij ¼ ðgi x jÞ�1bijgj: ð4:5Þ

It is easy to see that B is an equivalence relation, and that Z2ðX ;GÞ is stable under
B: We define

H2ðX ;GÞ ¼ Z2ðX ;GÞ=B: ð4:6Þ

Example 4.11. Let S be a non-empty set; then H2ðX ;SSÞ parameterizes isomorph-
ism classes of constant extensions of X by S; as in Section 2.2.

Remark 4.12. Though obvious, we point out that H2ðX ;SSÞ ¼ H2ðX ;Z2Þ when S

has only two elements.

4.6. Non-abelian non-principal cohomology

We combine the theory of non-principal cohomology in Section 4.4 with that of

non-abelian cohomology: let X ¼ TiAI Xi be a decomposition of the rack X and for
each iAI let Gi be a group. Let us denote GI this collection. We consider

Z2ðX ;GIÞ ¼ f ¼ Tifi : X � Xi-Gij
n
fiðx; yx zÞfiðy; zÞ ¼ fiðxx y; xx zÞfiðx; zÞ 8x; yAX ; zAXi

o
:

As usual, if f ; f̃AZ2ðX ;GIÞ; we say that fBf̃ iff (g ¼ Tigi : Xi-Gi such that

f̃iðx; yÞ ¼ giðxx yÞ�1
fiðx; yÞgiðyÞ 8xAX ; yAXi:

The importance of such a theory becomes apparent in Theorem 4.14.

Definition 4.13. For iAI ; let be given a positive integer ni and a subgroup

GiCGLðC; niÞ: Let f ¼ Tifi : X � Xi-Gi: Take V ¼ "
iAI

Xi � Cni a vector space and

consider the linear isomorphism

cf : V#V-V#V ; cf ððx; aÞ#ðy; bÞÞ ¼ ðxx y; fiðx; yÞðbÞÞ#ðx; aÞ;

xAXj; yAXi; aACnj ; bACni :

Theorem 4.14. (1) Let X ;GI ;V ; cf be as in the definition. Then cf satisfies the Braid

Equation if and only if fAZ2ðX ;GI Þ:
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(2) Furthermore, if fAZ2ðX ;GI Þ; then there exists a group G such that V is a

Yetter–Drinfeld module over G: In particular, the braiding of V as an object in G
GYD

coincides with cf : If Gi is finite 8iAI and X is finite, then G can be chosen to be finite.

(3) Conversely, if G is a finite group and VAG
GYD; then there exist X ¼ TXi; finite

groups GI ; fAZ2ðX ;GI Þ such that V is given as in the definition and the braiding

cAAutðV#VÞ in the category G
GYD coincides with cf : Here, X can be chosen to be a

crossed set.

(4) If fBf̃ and ðV ; cf Þ; ðṼ; cf̃Þ are the spaces associated to f ; f̃; then they are

isomorphic as braided vector spaces, i.e., there exists a linear isomorphism g : Ṽ-V

such that ðg#gÞcf̃ ¼ cf ðg#gÞ : Ṽ#Ṽ-V#V :

Proof.

(1) Straightforward.
(2) It follows from [G2, 2.14]. The finiteness of G follows from the fact that the

group GCGLðVÞ can be chosen to be the group generated by the maps
ðy; bÞ/ðxx y; f ðx; yÞbÞ; which is contained in the product

Q
iAI Gi; where Gi ¼

SXi
� Gi:

(3) It follows from the structure of the modules in G
GYD: Indeed, if V ¼ "iMðgi; riÞ

(see [G1] for the notation), giAG; Gi ¼ fxgi ¼ gixg the centralizer of gi;

fhi
1;y; hi

si
g a set of representatives of left coclasses G=Gi; and tiu

jvAGu defined by

hi
jgiðhi

jÞ
�1

hu
v ¼ hu

v0t
iu
jv ; then take X ¼ TiXi; Xi ¼ fhi

1;y; hi
si
g; and f ðhi

j; hu
vÞ ¼

ruðtiu
jvÞ:

(4) It is straightforward to verify that if f̃iðx; yÞ ¼ giðxx yÞ�1
fiðx; yÞgiðyÞ

8xAX ; yAXi; then the map ðx; aÞ/ðx; giðxÞðaÞÞ ðxAXiÞ is an isomorphism of
braided vector spaces. &

Notice that any Yetter–Drinfeld module over a group algebra can be constructed
by means of a crossed set, and one does not need the more general setting of
quandles, nor racks for it. However, racks may give easier presentations than crossed
sets for some braided vector spaces.

5. Braided vector spaces

We have seen that it is possible to build a braided vector space ðCX ; cqÞ from a
rack ðX ; x Þ and a 2-cocycle q; cf. Theorem 4.14 and [G1]. It turns out that the
braided vector space does not determine the rack. We now present a systematic way
of constructing examples of different racks, with suitable cocycles, giving rise to
equivalent braided vector spaces. We consider affine modules over a rack X ; that is
extensions of the form X �k A; where A is an abelian X -module; see Definition 2.26.
If the cocycle q is chosen in a convenient way, we can change the basis ‘‘à la Fourier’’

ARTICLE IN PRESS
N. Andruskiewitsch, M. Gra *na / Advances in Mathematics 178 (2003) 177–243214



and obtain a braided vector space arising from a set-theoretical solution of the
QYBE. This solution is in turn related to the braided vector space arising from the
derived rack of the set-theoretical solution of the QYBE.

Section 5.1 is an exposition of the relevant facts about set-theoretical solutions
needed in this paper. In Section 5.2 we discuss braided vector spaces arising from set-
theoretical solutions. In Section 5.3 we present the general method and discuss
several examples.

5.1. Set-theoretical solutions of the QYBE

There is a close relation between racks and set-theoretical solutions of the Yang–
Baxter equation, or, equivalently, of the braid equation. It was already observed by
Brieskorn [B] that racks provide solutions of the braid equation. On the other hand,
certain set-theoretical solutions of the braid equation produce racks. This is proved
in [LYZ1,So], which belong to a series of papers (see [EGS,ESS,LYZ2,LYZ3])
devoted to set-theoretical solutions of the braid equation and originated in a
question by Drinfeld [Dr]. We give here the definitions necessary to us.

Let X be a non-empty set and let S : X � X-X � X be a bijection. We say that S

is a set-theoretical solution of the braid equation if ðS � idÞðid� SÞðS � idÞ ¼
ðid� SÞðS � idÞðid� SÞ:We shall briefly say that S is ‘‘a solution’’ or that ðX ;SÞ is a
braided set. A trivial example of a solution is the transposition t : X � X-X � X ;
ðx; yÞ/ðy; xÞ: It is well-known that S is a solution if and only if R ¼ tS : X �
X-X � X is a solution of the set-theoretical quantum Yang–Baxter equation. If
ðX ;SÞ is a braided set, there is an action of the braid group Bn on X n; the standard
generators si acting by Si;iþ1; which means, as usual, that S acts on the i; i þ 1

entries.
In particular, a finite braided set gives rise to a finite quotient of Bn for any n;

namely the image of the group homomorphism rn :Bn-SX n induced by the action.

Lemma 5.1. [B]. Let X be a set and let x : X � X-X be a function. Let

c : X � X-X � X ; cði; jÞ ¼ ði x j; iÞ: ð5:1Þ

Then c is a solution if and only if ðX ; x Þ is a rack.

Proof. It is easy to check that c is a bijection if and only if (1.1) holds, and that it
satisfies the braid equation if and only if (1.2) holds. &

Definition 5.2. Let X ; X̃ be two non-empty sets and let S : X � X-X � X ; S̃ : X̃ �
X̃-X̃ � X̃ be two bijections. We say that ðX ;SÞ and ðX̃; S̃Þ are equivalent if there

exists a family of bijections Tn : X n-X̃n such that TnSi;iþ1 ¼ S̃i;iþ1T
n; for all nX2;

1pipn � 1:
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If ðX ;SÞ and ðX̃; S̃Þ are equivalent and ðX ;SÞ is a solution, then ðX̃; S̃Þ is
also a solution and the Tn’s intertwine the corresponding actions of the braid
group Bn:

Definition 5.3 ([ESS,LYZ1]). Let ðX ;SÞ be a solution and let f ; g : X-FunðX ;XÞ
be given by

Sði; jÞ ¼ ðgið jÞ; fjðiÞÞ: ð5:2Þ

The solution (or the braided set) is non-degenerate if the images of f and g lie
inside SX :

Proposition 5.4 ([So,LYZ1]). Let S be a non-degenerate solution with the notation in

(5.2) and define x by

ix j ¼ fiðgf �1
j

ðiÞð jÞÞ: ð5:3Þ

(1) One has

f preserves x ; i:e: fið j x kÞ ¼ fið jÞx fiðkÞ; ð5:4Þ

fifj ¼ ffið jÞfgjðiÞ; 8i; jAX : ð5:5Þ

(2) If c is given by (5.1), then c is a solution; we call it the derived solution of S:
The solutions S and c are equivalent, and ðX ; x Þ is a rack.

(3) Let ðX ; x Þ be a rack and let f : X-SX : We define g : X-SX by

gið jÞ ¼ f �1
fjðiÞð fjðiÞx jÞ: ð5:6Þ

Let S : X � X-X � X be given by (5.2). Then S is a solution if and only if (5.4), (5.5)
hold. If this happens, the solutions S and c are equivalent, and S is non-degenerate.

Proof.

(1) It is not difficult.
(2) It is enough to show that S and c are equivalent; automatically, c is a

solution and a fortiori ðX ; x Þ is a rack. Let Tn : X n-X n be defined
inductively by

T2ði; jÞ ¼ ð fjðiÞ; jÞ; Tnþ1 ¼ QnðTn � idÞ;

where Qnði1;y; inþ1Þ ¼ ð finþ1
ði1Þ;y; finþ1

ðinÞ; inþ1Þ: One verifies using (5.4) and

(5.5) that TnSi;iþ1 ¼ ci;iþ1T
n; as needed.

(3) Straightforward. &

Note that (5.6) is equivalent to

gf �1
j

ðhÞð jÞ ¼ f �1
h ðhx jÞ: ð5:7Þ
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Remark 5.5. Let ðX ;SÞ be a non-degenerate solution and let x be defined by (5.3).
Then ðX ; x Þ is a quandle if and only if

f �1
i ðiÞ ¼ ðgf �1

i
ðiÞðiÞÞ; 8iAX ; ð5:8Þ

if this holds, it is a crossed set if and only if

f �1
i ð jÞ ¼ ðgf �1

j
ðiÞð jÞÞ ) f �1

j ðiÞ ¼ ðgf �1
i

ð jÞðiÞÞ 8i; jAX : ð5:9Þ

Let ðX ;SÞ; ðX̃; S̃Þ be two non-degenerate braided sets, with corresponding

maps f ; g; resp. f̃; *g: A function j : X-X̃ is a morphism of braided sets if and
only if

*gjðiÞjð jÞ ¼ jgið jÞ; ð5:10Þ

f̃jðiÞjð jÞ ¼ jfið jÞ; 8i; jAX : ð5:11Þ

It can be shown that j is a morphism of braided sets if and only j is a morphism of
the associated racks and (5.11) holds. One may say that a non-degenerate braided set
is simple if it admits no non-trivial projections. It follows that any solution associated
to a simple crossed set is simple, but the converse is not true as the following example
shows: take a set X with p elements, p a prime, and a cycle m of length p: Then

Sði; jÞ ¼ ðmð jÞ; m�1ðiÞÞ is simple but the associated rack is trivial.

Definition 5.6 ([ESS,SO]). Let ðX ;SÞ be a solution and let S2ði; jÞ ¼ ðGið jÞ;FjðiÞÞ:
The group GX ; resp. AX ; is the quotient of the free group generated by X by the
relations ij ¼ gið jÞfjðiÞ; resp. fjðiÞj ¼ FjðiÞfjðiÞ; for all i; jAX :

If ðX ; x Þ is a rack and c is the corresponding solution, then GX is the group
already defined in Definition 1.5, and coincides with AX :

5.2. Braided vector spaces of set-theoretical type

We now describe how set-theoretical solutions of the QYBE plus a 2-cocycle give
rise to braided vector spaces. We begin by the case of solutions arising from a rack.

Let ðX ; x Þ be a rack and let qAZ2ðX ;C�Þ; so that

qi;j x kqj;k ¼ qix j;ix kqi;k 8i; j; kAX : ð5:12Þ

Then, by Theorem 4.14, the space V ¼ CX has a structure of a Yetter–Drinfeld
module over a group whose braiding is given by cq :CX#CX-CX#CX ;

cqði#jÞ ¼ qi;j ix j#i; i; jAX :

Let X ¼ fx1;y; xng be a set, let S : X � X-X � X be a bijection and let F : X �
X-C� be a function. Let CX denote the vector space with basis X and define
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SF :CX#CX-CX#CX by

SF ði#jÞ ¼ Fi;jSði; jÞ ¼ Fi;jgij#fji; i; jAX ; ð5:13Þ

where we use the notation in (5.2).

Lemma 5.7. (1) SF is a solution of the braid equation if and only if ðX ;SÞ a solution

and

Fi;jFfj i;kFgij;gfj ik ¼ Fj;kFi;gjkFfgj ki;fkj; i; j; kAX : ð5:14Þ

(2) Assume that (5.14) holds. Then SF is rigid if and only if S is non-degenerate.

Proof.

(1) Straightforward.
(2) Rigidity is equivalent to cw : Vn#V-V#Vn being an isomorphism, where

cw ¼ ðevV#idV#VnÞðidVn#c#idVnÞðidVn#V#evnV Þ:

Assume for simplicity that F ¼ 1: Let ðdiÞiAX be the basis of Vn dual to X : Then

cwðdi#jÞ ¼
P

h:gjðhÞ¼i fhð jÞ#h: Hence, if cw is an isomorphism then gj is bijective

for all j; for cwðdi#jÞ ¼ 0 if i is not in the image of gj: Now, if fhð jÞ ¼ fhðkÞ then
cwðdgjðhÞ#jÞ ¼ cwðdgjðkÞ#jÞ; which implies j ¼ k:

Conversely, if S is non-degenerate then cw is an isomorphism with inverse

ðcwÞ�1ðr#dsÞ ¼ dg
f�1
s ðrÞðsÞ#f �1

s ðrÞ: &

Definition 5.8. Let ðX ;SÞ be a non-degenerate solution and let F : X � X-C� be a

function such that (5.14) holds. We say that the braided vector space ðCX ;SF Þ is of

set-theoretical type.

By results of Lyubashenko and others, a braided vector space ðCX ; cF Þ of set-
theoretical type can be realized as a Yetter–Drinfeld module over some Hopf algebra
H: See for example [Tk].

Example 5.9. Let G be a finite group. Let xAG; let O be the conjugacy class
containing x and let r : Gx-AutW be a finite dimensional representation of Gx the
centralizer of x: We choose a numeration fp1 ¼ x; p2;y; prg of O and fix elements

g1; g2;y; gr in G such that gixg�1
i ¼ pi: Then

Mðx; rÞ :¼ IndGGx
WCCO#WC "

1pipr
gi#W
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is a Yetter–Drinfeld module over CG with the coaction dðgi#wÞ ¼ pi#gi#w; and
the induced action; that is h � ðgi#wÞ ¼ gj#t � w; where j and tAGx are uniquely

determined by hpih
�1 ¼ pj ; hgi ¼ gjt: In particular, given i; kAf1;y; rg; let us denote

by jikAf1;y; rg; tikAGx the elements uniquely determined by

pkpip
�1
k ¼ pjik ; pkgi ¼ gjik tik: ð5:15Þ

We can then express the braiding in a compact way; write for simplicity giw ¼ gi#w:
If u;wAW and i; kAf1;y; rg then

cðgkw#giuÞ ¼ gjik tik � u#gkw: ð5:16Þ

We know from Theorem 4.14 that this braided vector space can be presented with
the crossed set fp1;y; prg and a non-abelian 2-cocycle with values in GLðWÞ: We
now show that under a suitable assumption we can present it with a (larger) rack and

an abelian 2-cocycle with values in C�: assume that there exists a basis w1;w2;y;wr

of W such that

h � ws ¼ wsðhÞwshðsÞ: ð5:17Þ

for some group homomorphism s : Gx-Sr and some map w : f1;y; rg � Gx-C�

satisfying

wsðthÞ ¼ wsðhÞwshðsÞðtÞ; 1pspr; t; hAGx:

Then

cðpkwq#piwsÞ ¼ wsðtikÞpjik wspk
ðsÞ#pkwq: ð5:18Þ

That is, the braided vector space ðMðx; rÞ; cÞ is of rack type.

We now introduce a relation between braided vector spaces weaker than
isomorphism but useful enough to deal with Nichols algebras; for example braided
vector spaces related by a twisting are t-equivalent as below.

Definition 5.10. We say that two braided vector spaces ðV ; cÞ and ðW ; dÞ are t-

equivalent if there is a collection of linear isomorphisms Un : V#n-W#n

intertwining the corresponding representations of the braid group Bn; for all nX2:
The collection ðUnÞnX2 is called a t-equivalence.

Example 5.11. Let ðCX ;SF Þ be a braided vector space of set-theoretical type (see
(5.13)). Let ðX ; cÞ be the derived solution; define qij ¼ Ff �1

j
ðiÞ;j: If

qfki;fkj ¼ qij 8i; j; kAX : ð5:19Þ

then the collection of maps Tn : X n-X n defined in the proof of Proposition 5.4

induce a t-equivalence between ðCX ;SF Þ and ðCX ; cqÞ: Indeed, computing only the
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coefficients, we have

coeffðTnSF
h;hþ1ði1#?#inÞÞ ¼ Fih;ihþ1

coeffðcq
h;hþ1T

nði1#?#inÞÞ ¼ qfin fin�1
?fihþ1

ih;fin fin�1
?fihþ2

ihþ1

and the equality holds by (5.19).

5.3. Fourier transform

We consider a rack ðX ; x Þ; a finite abelian X -module A; a dynamical cocycle

a : X � X-FunðA � A;AÞ; and a 2-cocycle q on the rack X �a A: Let Â be the
group of characters of A: We define a family of elements

ði;cÞ :¼
X
aAA

cðaÞði; aÞACðX �a AÞ; iAX ; cAÂ: ð5:20Þ

We want to know under which conditions there exists a family of scalars F
c;f
ij such

that

cqðði;cÞ#ð j;fÞÞ ¼ F
c;f
ij ði x j; WÞ#ði; nÞ; i; jAX ; c;fAÂ; ð5:21Þ

for some W; nAÂ: Our main result in this direction, and one of the main results in this
paper, is Theorem 5.13 below.

In what follows, we shall assume that the extension X �a A is an affine module
over X ; cf. Definition 2.26. That is, a is given by

ai;jða; bÞ ¼ Zi;jðbÞ þ ti;jðaÞ þ kij ; ð5:22Þ

where Zi;jAAutðAÞ; ti;jAEndðAÞ define the X -module structure on A; and kijAA: We

denote Yk :¼ X �k A: We shall also write qa;b
i;j ¼ qði;aÞ;ð j;bÞ: We begin by the following

result.

Lemma 5.12. Let q be given by

qa;b
i;j ¼ wi;jðbÞmi;jðaÞqij ; ð5:23Þ

where wi;j; mi;jAÂ; qijAC�: Then q is a 2-cocycle if and only if

wi;j x kðkj;kÞqi;j x kqj;k ¼ wix j;i x kðki;kÞmi x j;ix kðki;jÞqi x j;ix kqi;k; ð5:24Þ

wi;j x kðZj;kðaÞÞwj;kðaÞ ¼ wix j;ix kðZi;kðaÞÞwi;kðaÞ; ð5:25Þ
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mi;j x kðaÞ ¼ wix j;i x kðti;kðaÞÞmi x j;ix kðti;jðaÞÞmi;kðaÞ; ð5:26Þ

mi x j;ix kðZi;jðaÞÞ ¼ wi;j x kðtj;kðaÞÞmj;kðaÞ: ð5:27Þ

for all i; j; kAX ; aAA:

Proof. Writing explicitly down the cocycle condition on q; one gets an equality of
functions from A � A � A to C: Specialization at ð0; 0; 0Þ implies (5.24); then,
specialization at ða; 0; 0Þ; ð0; a; 0Þ; ð0; 0; aÞ implies the other conditions. The converse
is similar. &

Theorem 5.13. If the 2-cocycle q is given by (5.23) with wi;j; mi;jAÂ; qijAC�; then

cqðði;cÞ#ð j;fÞÞ ¼ F
c;f
ij ði x j; WÞ#ði; nÞ; ð5:28Þ

for all i; jAX ; c;fAÂ; where

F
c;f
ij ¼ qijfð *kijÞ�1wi;jð *kijÞ�1; ð5:29Þ

W ¼ ðfwi;jÞ 3 Z�1
i;j ; ð5:30Þ

n ¼ cmi;jððfwi;jÞ 3 *ti;jÞ�1: ð5:31Þ

Here *ti;jðaÞ ¼ Z�1
i;j ðti;jðaÞÞ; *kij ¼ Z�1

i;j ðkijÞ:

Proof. We compute

cqðði;cÞ#ð j;fÞÞ

¼
X

a;bAA

cðaÞfðbÞqa;b
i;j ðix j; Zi;jðbÞ þ ti;jðaÞ þ kijÞ#ði; aÞ

¼
X

a;cAA

cðaÞfðZ�1
i;j ðcÞ � *ti;jðaÞ � *kijÞq

a;Z�1
i;j ðcÞ�*ti;jðaÞ� *kij

i;j ðix j; cÞ#ði; aÞ

¼
X

a;cAA

qijfð *kijÞ�1wi;jð *kijÞ�1 cðaÞfð*ti;jðaÞÞ�1mi;jðaÞwi;jð*ti;jðaÞÞ�1

� fðZ�1
i;j ðcÞÞwi;jðZ�1

i;j ðcÞÞðix j; cÞ#ði; aÞ;

where in the first equality we use (5.22); in the second, we perform the change of
variables c ¼ Zi;jðbÞ þ ti;jðaÞ þ kij which gives

b ¼ Z�1
i;j ðc � ti;jðaÞ � kijÞ ¼ Z�1

i;j ðcÞ � *ti;jðaÞ � *kij;
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in the third equality we use (5.23) and that f and wij are multiplicative. The claim

follows. &

Remark 5.14. The derived rack of the braided set underlying (5.28) is given by

ði;cÞx ð j;fÞ ¼ ðix j; ½ðfwijÞ 3 Z�1
ij ½ðcwix j;iÞ 3 *tix j;i�1mix j;iÞ:

Note that it does not depend on ðkijÞ but only on the cocycle q:

Example 5.15. Assume that X is trivial.

(1) q given by (5.23) is a cocycle if and only if:

wi;kðkj;kÞ ¼ wj;kðki;kÞmj;kðki;jÞ; ð5:32Þ

wi;kðZj;kðsÞÞwj;kðsÞ ¼ wj;kðZi;kðsÞÞwi;kðsÞ; ð5:33Þ

1 ¼ wj;kðti;kðsÞÞmj;kðti;jðsÞÞ; ð5:34Þ

mj;kðZi;jðsÞÞ ¼ wi;kðtj;kðsÞÞmj;kðsÞ; ð5:35Þ

for any i; j; kAX ; sAA:
(2) Let s : X-A be any function; define kij :¼ si � sj; and

ai;jða; bÞ ¼ b þ kij ; ð5:36Þ

that is Zij ¼ id; tij ¼ 0 in (5.22). Then a is a non-trivial cocycle, provided that s is

not constant; we shall assume this in the rest of the example and in Lemma 5.16
below.

(3) Furthermore, let qijAC� and let o : X-Â be any function; define wi;j :¼ oj ¼:

m�1
i;j ; and define q by (5.23). We claim that q is a cocycle. Conditions (5.33), (5.34)

and (5.35) follow because Zij ¼ id and tij ¼ 0; condition (5.32) follows from the

special definition of kij :

Then we can apply Theorem 5.13. We have

cqðði;cÞ#ð j;fÞÞ ¼ qijðfojÞðsjÞðfojÞðsiÞ�1ð j;fojÞ#ði;co�1
j Þ; ð5:37Þ

for all i; jAX ; c;fAÂ: In other words, we consider the solution ðX � Â;SÞ
where

Sðði;cÞ; ð j;fÞÞ ¼ ðð j;fojÞ; ði;co�1
j ÞÞ; ð5:38Þ

the cocycle F
c;f
ij ¼ qijðfojÞðsjÞðfojÞðsiÞ�1; and the corresponding braided

vector space ðCðX � ÂÞ;SF Þ: The associated rack is

ði;cÞx ð j;fÞ ¼ ð j;fojo�1
i Þ:

ARTICLE IN PRESS
N. Andruskiewitsch, M. Gra *na / Advances in Mathematics 178 (2003) 177–243222



(4) Assume now that oi ¼ oAÂ; for all i: Hence the associated rack is trivial. Let

Q
c;f
ij ¼ qijfðsjÞfðsiÞ�1

and let ðCðX � ÂÞ; cQÞ be the associated braided vector space. Let Tn : ðX �
ÂÞn-ðX � ÂÞn be as in the proof of Proposition 5.4. In our case, we have

Tnðði1;c1Þ;y; ðij ;cjÞ;y; ðin;cnÞÞ ¼ ðði1;c1o
1�nÞ;y; ðij;cjo

j�nÞ;y; ðin;cnÞÞ:

Lemma 5.16. The braided vector spaces ðCðX � ÂÞ;SF Þ and ðCðX � ÂÞ; cQÞ are t-

equivalent.

Proof. Let ph be defined inductively by p1 ¼ 1; phþ1 ¼ ph þ n � h; and let

li1;y;in ¼
Y

1phpn

ophðsihÞ:

We shall show that the map Un :CðX � ÂÞ#n-CðX � ÂÞ#n; Unðði1;c1Þ#?#

ðin;cnÞÞ ¼ li1;y;in Tnðði1;c1Þ#?#ðin;cnÞÞ; satisfies UnSF
j;jþ1 ¼ c

Q
j;jþ1U

n; that is, Un

intertwines the corresponding representations of the braid group.
On one hand,

UnSF
j;jþ1ðði1;c1Þ#?#ðin;cnÞÞ

¼ qij ijþ1
ðcjþ1oÞðsijþ1

Þðcjþ1oÞðsij Þ
�1

� Unðði1;c1o
1�nÞ#?#ðijþ1;cjþ1oÞ#ðij ;cjo

�1Þ#?#ðin;cnÞÞ

¼ qij ijþ1
ðcjþ1oÞðsijþ1

Þðcjþ1oÞðsij Þ
�1li1;y;ijþ1;ij ;y;in

� ðði1;c1o
1�nÞ#?#ðijþ1;cjþ1o

jþ1�nÞ#ðij;cjo
j�nÞ#?#ðin;cnÞÞ;

whereas, on the other hand,

c
Q
j;jþ1U

nðði1;c1Þ#?#ðin;cnÞÞ

¼ li1;y;in c
Q
j;jþ1ðði1;c1o

1�nÞ#?#ðij ;cjo
j�nÞ#ðijþ1;cjþ1o

jþ1�nÞ#?#ðin;cnÞÞ

¼ li1;y;in qij ijþ1
cjþ1o

jþ1�nðsijþ1
Þcjþ1o

jþ1�nðsij Þ
�1

� ðði1;c1o
1�nÞ#?#ðijþ1;cjþ1o

jþ1�nÞ#ðij ;cjo
j�nÞ#?#ðin;cnÞÞ:
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The equality holds since

oðsijþ1
Þoðsij Þ

�1opj ðsijþ1
Þopjþ1ðsij Þ ¼ opj ðsij Þopjþ1ðsijþ1

Þojþ1�nðsijþ1
Þo�j�1þnðsij Þ;

by definition of the ph’s. &

Example 5.17. Assume that Zij ¼ id for all i; jAX :

(1) A family ðtijÞ defines a quandle structure of X -module on A if and only if tii ¼ 0;

tj;k ¼ tix j;ix k and

ti;j x k ¼ ti;k þ ti;jtj;k; ð5:39Þ

for all i; j; kAX : Given such a family, ðkijÞ is a 2-cocycle if and only if

kj;k þ ki;j x k ¼ ki;k þ tj;kðki;jÞ þ ki x j;ix k; ð5:40Þ

(2) We shall consider the following family of examples: X ¼ ðZ=3; x 2Þ is the
unique simple crossed set with three elements; A is a finite abelian group of
exponent 2; tij ¼ id� dij ; i; jAX : It is not difficult to verify that ðtijÞ satisfies the
conditions in (1). We fix aAA; and set

kij ¼ ð1� dijÞa; *kij ¼ di;jþ1a;

i; jAX : Both families ðkijÞ and ð *kijÞ satisfy (5.40); we denote the corresponding

extensions by Y ¼ X �k A; Ỹ ¼ X � *k A: We shall assume that aa0: Indeed,
Y ¼ X �k A (for aa0) is isomorphic to Y ¼ X �0 A (case a ¼ 0); just consider
the function f : X-A; f ðiÞ ¼ a for all i; and check that k is cohomologous to 0,
cf. (2.18).

Analogously, we denote Ŷ ¼ X �0 Â:
(3) If A ¼ Z=2; a ¼ 1; Y is isomorphic to the crossed set of transpositions in S4; via

the identification

ð12Þ ¼ ð0; 0Þ; ð34Þ ¼ ð0; 1Þ; ð13Þ ¼ ð1; 0Þ;

ð24Þ ¼ ð1; 1Þ; ð14Þ ¼ ð2; 0Þ; ð23Þ ¼ ð2; 1Þ:

Furthermore, Ỹ is isomorphic to the crossed set of 4-cycles in S4 (that is, the
faces of the cube), via the identification

ð1234Þ ¼ ð0; 0Þ; ð1324Þ ¼ ð1; 0Þ; ð1243Þ ¼ ð2; 0Þ;

ð1432Þ ¼ ð0; 1Þ; ð1423Þ ¼ ð1; 1Þ; ð1342Þ ¼ ð2; 1Þ:

The crossed sets Y and Ỹ are not isomorphic.
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(4) We consider now the cocycle qab
ij ¼ qijAC�; that is wi;j ¼ mi;j ¼ e; for all i; j; in

(5.23). By Theorem 5.13, we have in the braided vector spaces ðCY ; cqÞ and

ðCỸ; c̃qÞ the equalities

cqðði;cÞ#ð j;fÞÞ ¼ qijfðð1� dijÞaÞðix j;fÞ#ði;cf1�dij Þ;

c̃qðði;cÞ#ð j;fÞÞ ¼ qijfððdi;jþ1ÞaÞði x j;fÞ#ði;cf1�dij Þ;

for all i; jAX ; c;fAÂ: That is, we have isomorphisms with braided vector spaces

ðCðX � ÂÞ;SF Þ; respectively ðCðX � ÂÞ; S̃F Þ: In both cases, the associated rack

is given by ði;cÞx ð j;fÞ ¼ ði x j;fc1�dij Þ; this is the crossed set Ŷ: Let

Q
cf
ij ¼ qij:

Lemma 5.18. (1) The braided vector spaces ðCY ; cqÞ and ðCŶ; cQÞ are t-equivalent.

(2) The braided vector spaces ðCỸ; c̃qÞ and ðCŶ; cQÞ are t-equivalent.

(3) The braided vector spaces ðCY ; cqÞ and ðCỸ; c̃qÞ are t-equivalent.

Proof

(1) By Theorem 5.13, it is enough to show that the map

Un :CðX � ÂÞ#n-CðX � ÂÞ#n;

Unðði1;c1Þ#?#ðin;cnÞÞ ¼ ðc1?cnÞðaÞ Tnðði1;c1Þ#?#ðin;cnÞÞ;

satisfies UnSF
j;jþ1 ¼ c

Q
j;jþ1Un: This is a straightforward computation.

(2) Let Gn be the image of the group homomorphism rn :Bn-SX n induced by the
rack structure on X : Let Ln :¼

P
gAGn

g be a non-normalized integral of the Hopf

algebra CGn: The group Gn acts on the vector space FunðX n;CXÞ in the usual
way; let Zn ¼ Ln � d1 where d1 is the function d1ði1;y; inÞ ¼ i1: We write

Zn ¼
X

kAKn

Zn
k;

where Zn
k is actually a function from X n to X and Kn is an index set. Let

Rn
1ði1;y; inÞ ¼

X
kAKn�1

di1 x Zn
k
ði2;y;inÞ; i1þ1

 !
a;

Rn
t ði1;y; inÞ ¼ Rn

1ðit; it x i1; it x i2;y; it x it�1; itþ1;y; inÞ; tX2:

We consider the map Un :CðX � ÂÞ#n-CðX � ÂÞ#n;

Unðði1;c1Þ#?#ðin;cnÞÞ ¼ c1ðRn
1Þ?cnðRn

nÞTnðði1;c1Þ#?#ðin;cnÞÞ:

ARTICLE IN PRESS
N. Andruskiewitsch, M. Gra *na / Advances in Mathematics 178 (2003) 177–243 225



By Theorem 5.13, it is enough to show that Un satisfies UnSF
j;jþ1 ¼ c

Q
j;jþ1U

n: A

straightforward computation shows that this is equivalent to the following set of
identities:

Rn
t ði1;y; inÞ ¼ Rn

t ði1;y; ih x ihþ1; ih;y; inÞ; hat; t þ 1; ð5:41Þ

Rn
t ði1;y; inÞ ¼ Rn

tþ1ði1;y; it x itþ1; it;y; inÞ; ð5:42Þ

Rn
t ði1;y; inÞ ¼ dit;itþ1þ1a þ Rn

t�1ði1;y; it�1 x it; it�1;y; inÞ

þ ð1� dit;it�1
ÞRn

t ði1;y; it�1 x it; it�1;y; inÞ: ð5:43Þ
Now, Eq. (5.41) for t ¼ 1 follows from the invariance of the integral, whereas

for t41 follows from the definition and the case t ¼ 1: Clearly, (5.42) follows
from the definition also. Finally, (5.43) can be shown by induction on n and t:

(3) follows from (1) and (2). &

6. Nichols algebras and pointed Hopf algebras

6.1. Definitions and tools

The Nichols algebra of a rigid braided vector space ðV ; cÞ can be defined in various
different ways, see for example [AG,AS2]. We retain the following one. If we
consider the symmetric group Sn and the braid group Bn with standard generators
ft1;y; tn�1g and fs1;y; sn�1g; respectively, then the so-called Matsumoto section
for the canonical projection Bn-Sn; si/ti; is the set-theoretical function defined
on xASn by the recipe (i) write x ¼ ti1?til in a shortest possible way, and (ii) replace

the ti’s by si’s, i.e., MðxÞ ¼ si1?sil : Then,

BðVÞ ¼ "
nX0

BnðVÞ ¼ C"V" "
nX2

TnðVÞ=kerQn

� �
;

where Qn ¼
P

xASn
MðxÞ is the so-called ‘‘quantum symmetrizer’’. This presentation

of the Nichols algebra immediately implies:

Lemma 6.1. If ðV ; cÞ and ðṼ; c̃Þ are t-equivalent braided vector spaces (cf. Definition

5.10) then the corresponding Nichols algebras BðVÞ and BðṼÞ are isomorphic as

graded vector spaces. In particular, one has finite dimension, resp. finite GK-dimension,
if and only if the other one has.

Proof. Easy. &

For a subspace JDTðVÞ we say that it is compatible with the braiding if
cðV#JÞ ¼ J#V and cðJ#VÞ ¼ V#J:
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Lemma 6.2. Let ðX ; x Þ be a rack, let qAC� and let q � q be the cocycle qij ¼
q 8i; jAX : Let ðV ¼ CX ; cqÞ be the associated braided space and let JDTðVÞ be a

subspace. Notice that TðVÞ is an Innx ðXÞ-comodule algebra with the structure

induced by V-CInnx ðXÞ#V ; x/fx#x for xAX : Furthermore, TðVÞ is an

Innx ðXÞ-module algebra via x : If J is Innx ðXÞ-homogeneous and Innx ðX Þ-stable,
then it is compatible with the braiding.

Proof. It is sufficient to prove that for xAX we have cðJ#CxÞDV#J and
cðCx#JÞDJ#Cx: The first inclusion is a consequence of the homogeneity of J; the
second one is a consequence of the stability of J: &

Finite-dimensional Nichols algebras (as well as any finite-dimensional graded rigid
braided Hopf algebra) satisfy a Poincaré duality: let n be the degree of the space of
integrals (it is easy to see that the space of integrals is homogeneous with respect to

the Z-grading), then dimBrðVÞ ¼ dimBn�rðVÞ for all rAZ: Furthermore, since

BðVÞ is concentrated in positive degrees, we have that BmðVÞ ¼ 0 for m4n; since

dimB0ðVÞ ¼ 1 we have that dimBnðVÞ ¼ 1; since BðVÞ is generated by B1ðVÞ; we
have that dimBrðVÞa0 for 0prpn: We call n the top degree of BðVÞ: Choose then
a non-zero integral

R
: There is a non-degenerate bilinear pairing (which is the same

as that in the proof of the Poincaré duality) given by ðxjyÞ ¼ l if xy ¼ l
R
þ terms of

degree on: These facts, first encountered by Nichols [N], give a powerful strategy for
computing Nichols algebras. We state this strategy after the following definition.

Definition 6.3. For rX2; let Jr be the ideal generated by "r
i¼2 kerðQiÞ: Let #BrðVÞ ¼

TðVÞ=Jr; which has a projection #Br-BðVÞ: It is not difficult to see that

"r
i¼2 kerðQiÞ is a coideal which is compatible with the braiding, whence #BrðVÞ is

a braided Hopf algebra. Moreover, it is graded, it is generated by its elements in
degree 1, and in degree 0 it is 1-dimensional. Then it fulfills the same properties
above about Poincaré duality as BðVÞ:

Theorem 6.4. (1) Suppose that #BrðVÞ vanishes in degree 2r þ 1: Then #BrðVÞ ¼ BðVÞ:
(2) Let JD kerðTðVÞ-BðVÞÞ be an ideal which is also a coideal and is compatible

with the braiding. Suppose that TðVÞ=J is finite dimensional, it has top degree n and

dimBnðVÞa0: Then TðVÞ=J ¼ BðVÞ:
(3) Suppose that #BrðVÞ is finite dimensional, it has top degree n and dimBnðVÞa0:

Then #BrðVÞ ¼ BðVÞ:

Proof.

(1) Follows from Poincaré duality: dim #Bi
rðVÞ ¼ dimBiðVÞ for 0pipr and the top

degree of BðVÞ is p2r:
(2) This is so thanks to the non-degenerate bilinear form of TðVÞ=J: let

R
be an

integral in TðVÞ=J: If 0axAkerðTðVÞ=J-BðVÞÞ; then there exists yATðVÞ=J
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such that xy ¼
R
: But then

R
AkerðTðVÞ=J-BðVÞÞ; which implies that

ImðTnðVÞ=J-BðVÞÞ ¼ 0; a contradiction.
(3) follows from (2). &

In the examples we present in Sections 6.3 and 6.5, we have computed the
quotients TðVÞ=J finding Gröbner bases, with the help of [Opal]. We also used a
program in Maple with subroutines in C to find the dimensions of the ideals Jr in
degree r for small r’s. Generators of Jr have been found by hand, using differential
operators (see below). Thus, we have used part (1) of the Theorem. However, we
shall use part (2) in the proofs.

The best way to prove that certain elements vanish (or not) in a Nichols algebra is

given by the differential operators @xn :BnðVÞ-Bn�1ðVÞ (xnAVn). These are skew
derivations. When V ¼ CX is given by a rack, we consider the basis fxAXg of V

and fxng its dual basis; we extend xn to BðVÞ by xnðaÞ ¼ 0 if aABnðVÞ; na1: We

put then @x ¼ @xn ¼ ðid#xnÞ 3 D (here D is the comultiplication in BðVÞ). It can be

proved that for aABnðVÞ (nX2) we have a ¼ 0 if and only if @xnðaÞ ¼ 0 8xnAVn (cf.
[N,G2]). We consider analogously defined derivations @x in the algebras TðVÞ;
#BrðVÞ; TðVÞ=J for J an ideal as above.

6.2. Some calculations of Nichols algebras related to braided vector spaces of diagonal

group type

In this subsection we compute examples of Nichols algebras of braided vector spaces
arising from Example 5.15. We first recall some results on Nichols algebras of braided
spaces of diagonal group type, i.e., ðV ; cÞ ¼ ðCX ; cqÞ; where X is a trivial rack.

Proposition 6.5. Let ðV ; cÞ be a braided vector space with V ¼ Cx1"?"Cxy and

cðxi#xjÞ ¼ qijxj#xi; 1pi; jpy:

(1) Assume that qij ¼ q for all i; j: Thus

� (Nichols) If q ¼ �1; then BðVÞCLðVÞ; hence dimBðVÞ ¼ 2y:
� (Lusztig; see [AS2]) If q is a primitive third root of 1, then dimBðVÞ ¼ 27

when y ¼ 2; and dimBðVÞ ¼ N when y42:
� (Lusztig; see [AS2]) If ord q43 and yX2; then dimBðVÞ ¼ N:

(2) [AD] Assume that qii ¼ �1 8i; qijAf71g 8i; j: For iaj; set AijAf0;�1g such that

qijqji ¼ ð�1ÞAij : Set also Aii ¼ 2: Then ðAijÞ1pi;jpy is a simply laced generalized

Cartan matrix. Thus

� If the components of the Dynkin diagram corresponding to ðAijÞ are of type

Am (not necessarily the same m), then dimBðVÞ ¼ 2jF
þj; where Fþ is the set

of positive roots corresponding to ðAijÞ:
� If the Dynkin diagram corresponding to ðAijÞ contains a cycle, then

dimBðVÞ ¼ N: &
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Conjecture 6.6 (Andruskiewitsch and Dăscălescu [AD]). Same notation as in (2)

above. Then dimBðVÞ ¼ 2jF
þj if ðAijÞ is of finite type, and dimBðVÞ ¼ N otherwise.

Let us consider the Dynkin diagrams:

We shall need to assume only the following weaker form of the previous conjecture:

Conjecture 6.7. Same notation as in (2) above. Then dimBðVÞ ¼ 212 if ðAijÞ is of type

D4; and dimBðVÞ ¼ N if ðAijÞ is of type D
ð1Þ
4 :

We next consider a trivial rack X ; a finite, non-trivial, abelian group A; denoted

multiplicatively; and a non-constant function s : X-A: We set kij :¼ sis�1
j ; Zij ¼ id;

tij ¼ 0 8i; jAX (cf. Example 5.15). Let Y ¼ X � A; let ðqijÞi;jAX be a collection of

scalars, let oAÂ; let wi;j :¼ o ¼: m�1
i;j ; for all i; j; define q by (5.23).

Proposition 6.8. Let ðV ; cÞ be the braided vector space ðCY ; cqÞ:

(1) If ord qii43 for some i; then dimBðVÞ ¼ N:
(2) If ord qii ¼ 3 for some i; then either ACC2; the group of order 2 (hence 27 divides

dimBðVÞ if this is finite), or else dimBðVÞ ¼ N:
(3) Assume that qii ¼ �1 for all iAX : Furthermore, assume that qijqji ¼ ð�1ÞAij for all

iajAX ; where AijAf0;�1g; and that ord kijp2: Then, if AC/ C2; we have

dimBðVÞ ¼ N:
(4) Same hypotheses as in (3); assume that the group ACf71gCC2: Let X7 ¼

fiAX : si ¼ 71g: Assume that Conjecture 6.7 is true. Then

� If card Xþ ¼ 1; card X�p3 and qijqji ¼ 1 for all iajAX�; then dimBðVÞ is

finite.
� If card X� ¼ 1; card Xþp3 and qijqji ¼ 1 for all iajAXþ; then dimBðVÞ is

finite.
� In all other cases, dimBðVÞ ¼ N:

Proof. Let Ŷ ¼ X � Â and let Q
c;f
ij ¼ qijfðk�1

ij Þ: By Theorem 5.13 and Lemma 5.16,

it is enough to consider the braided vector space ðW ; cÞ ¼ ðCŶ; cQÞ:
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Then (1) and (2) follow from Proposition 6.5, applied to the subspace CŶi; where

Yi ¼ fði;cÞ: cAÂg: The divisibility claim in (2) follows from Proposition 6.17
below.

We prove (3). There exists iaj such that kij has order 2 (recall that s is not

constant). Let E ¼ ffAÂ: fðkijÞ ¼ 1g and F ¼ ffAÂ: fðkijÞ ¼ �1g; clearly,

card E ¼ card F : Assume that card E41; and let f1af2AE; c1ac2AF : There
are two possibilities:

* If qijqji ¼ 1; then ði;f1Þ; ði;f2Þ; ð j;c1Þ; ð j;c2Þ span a subspace U of W with

cðU#UÞ ¼ U#U ; the associated Cartan matrix is of type A
ð1Þ
3 ; hence

dimBðVÞ ¼ N:
* If qijqji ¼ �1; then ði;f1Þ; ði;f2Þ; ð j;f1Þ; ð j;f2Þ span a subspace U of W with

cðU#UÞ ¼ U#U ; the associated Cartan matrix is of type A
ð1Þ
3 ; hence

dimBðVÞ ¼ N:

We prove (4). Let iajAXþ; then kij ¼ 1: Let us denote Â ¼ fe; sgng: If qijqji ¼ �1;

then ði; eÞ; ði; sgnÞ; ð j; eÞ; ð j; sgnÞ span a braided vector subspace of Cartan type with

matrix A
ð1Þ
3 ; by Proposition 6.5 (2), dimBðVÞ ¼ N:

We assume then that qijqji ¼ 1 for all iajAXþ; and also for all iajAX�: Since k is

non-trivial, both Xþ and X� are non-empty. Let iAXþ and consider the vector

subspace U spanned by ðfig,X�Þ � Â: If card X�43; then the Cartan matrix of the

braiding of U contains a principal submatrix of type D
ð1Þ
4 : If Conjecture 6.7 is true,

then dimBðVÞ ¼ N: Hence, we can assume that card X7p3: Also, if card X7 ¼ 2
then the Cartan matrix of W contains a cycle; by Proposition 6.5 (2), dimBðVÞ ¼
N: The only cases left are card Xþ ¼ 1; card X�p3; or card X� ¼ 1; card Xþp3: In
these cases, the Cartan matrices of W are of finite type; either A2 � A2; or A3 � A3;
or D4 � D4: This concludes the proof of (4). &

Remark 6.9. (1) In part (2) of the proposition, if ord qii ¼ 3; for some iAX ; and
card A ¼ 2; then our present knowledge of Nichols algebras of diagonal type does
not allow to obtain any general conclusion on dimBðVÞ:

(2) In part (3) of the proposition, if ord qijqji42; or ord kij42 for some i; jAX ;

then our present knowledge of Nichols algebras of diagonal type does not allow to
obtain any conclusion on dimBðVÞ:

6.3. Concrete realizations of pointed Hopf algebras computed with Fourier transform

Here we give examples of groups with Yetter–Drinfeld modules as in Proposition
6.8. This in turn produces new examples of pointed Hopf algebras with non-abelian
group of grouplikes. We also give a new pointed Hopf algebra using Example 5.17.

For n;mAN; let F ¼ C4n; G ¼ C4m be cyclic groups. Denote by x a generator of F

and by y a generator of G: Let F act on G by y!x ¼ y2mþ1; and G act on F by
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ygx ¼ x2nþ1:We can consider then the group FtG; which coincides with F � G as
a set and whose multiplication is defined by

ðxiyjÞðxkylÞ ¼ xiðyj
gxkÞðyj

!xkÞyl ¼ xiþkþjkð2nÞyjþlþjkð2mÞ:

Notice that the center ZðFtGÞ is generated by x2; y2: The conjugacy classes of

FtG have then cardinality 1 and 2, and they are fx2iy2jg; fx2iþ1y2j; x2iþ2nþ1y2jþ2mg;
fx2iy2jþ1; x2iþ2ny2jþ2mþ1g; fx2iþ1y2jþ1;x2iþ2nþ1y2jþ2mþ1g: Take w defined by wðxÞ ¼
wðyÞ ¼ �1; and the Yetter–Drinfeld modules Vi ¼ Mðx2iþ1; wÞ; Wj ¼ Mðy2jþ1; wÞ:
We have then the following examples:

(1) V ¼ V0"W0: By Proposition 6.8, V is t-equivalent to a space of type A2 � A2;

and then dimBðVÞ ¼ 26: We have a family of link-indecomposable pointed

Hopf algebras BðVÞ#CðFtGÞ of dimension 26 � 16mn ¼ 210mn: The smallest

example of this family is n ¼ m ¼ 1 with dimension 210: Another way to realize
this example is over the dihedral group D4 of order 8, as described in [MS, 6.5;
G1, 5.2].

(2) V ¼ V0"V1"W0: By Proposition 6.8, V is t-equivalent to a space of type

A3 � A3; and then dimBðVÞ ¼ 212: We have a family of link-indecomposable

pointed Hopf algebras BðVÞ#CðFtGÞ of dimension 212 � 16mn ¼ 216mn; for
nX2: The smallest example of this family is n ¼ 2; m ¼ 1; and then

dimBðVÞ#CðFtGÞ ¼ 212 � 32 ¼ 217:
(3) V ¼ V0"V1"V2"W0: By Proposition 6.8, V is t-equivalent to a space of type

D4 � D4: Assuming Conjecture 6.7, we have dimBðVÞ ¼ 224: We have a family
of link-indecomposable pointed Hopf algebras BðVÞ#CðFtGÞ of dimension

224 � 16mn ¼ 228mn; for nX3: The smallest example of this family is

n ¼ 3; m ¼ 1; and then dimBðVÞ#CðFtGÞ ¼ 224 � 48 ¼ 2283:

Remark 6.10. Actually, in the examples above we have dimPg;hp2 for any g; h

grouplikes. If we allow bigger dimensions, then we can take always D4 as
group.

We give now the algebras obtained from Example 5.17. One of them appears in
[MS], and then by Lemma 5.18 the other one has the same dimension. We give a full
presentation by generators and relations of both of them.

6.3.1. Nichols algebra related to the transpositions in S4 [MS]

Let X ¼ fa; b; c; d; e; f g be the standard crossed set of the transpositions in S4 and
consider the braided vector space ðV ; cÞ ¼ ðCX ; cqÞ associated to the cocycle q � �1:
Here

a ¼ ð12Þ; b ¼ ð13Þ; c ¼ ð14Þ; d ¼ ð23Þ; e ¼ ð24Þ; f ¼ ð34Þ:
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Theorem 6.11 (Milinski and Schneider [MS, 6.4]). The Nichols algebra BðVÞ can be

presented by generators fa; b; c; d; e; f g with defining relations

a2; b2; c2; d2; e2; f 2;

dc þ cd; eb þ be; fa þ af ;

da þ bd þ ab; db þ ad þ ba; ea þ ce þ ac; ec þ ae þ ca;

fb þ cf þ bc; fc þ bf þ cb; fd þ ef þ de; fe þ df þ ed: ð6:1Þ

To obtain a basis, choose one element per row below, juxtaposing them from top to

bottom:

ð1; aÞ;

ð1; b; baÞ;

ð1; c; cb; cba; ca; cab; caba; cabacÞ;

ð1; dÞ;

ð1; e; edÞ;

ð1; f Þ:

Its Hilbert polynomial is then

PðtÞ ¼ ð1þ tÞð1þ t þ t2Þð1þ t þ 2t2 þ 2t3 þ t4 þ t5Þð1þ tÞð1þ t þ t2Þð1þ tÞ

¼ ð1þ tÞ4ð1þ t þ t2Þ2ð1þ t2Þ2

¼ t12 þ 6t11 þ 19t10 þ 42t9 þ 71t8 þ 96t7 þ 106t6 þ 96t5 þ 71t4 þ 42t3

þ 19t2 þ 6t þ 1:

Its dimension is 2632 ¼ 576: Its top degree is 12: An integral is given by abacabacdedf :

We give an alternative proof to that in [MS, 6.4] using Theorem 6.4.

Proof. It is straightforward to see that the elements in (6.1) vanish in BðVÞ: One can
either use differential operators or either compute Q2 ¼ 1þ c on them. Using
Gröbner bases it can be seen that if J is the ideal generated by these relations, then
TðVÞ=J has the stated basis. Since J is generated by primitive elements, it is a
coideal. Furthermore, J is generated by homogeneous elements with respect to the
Innx ðXÞ-grading, and it is invariant under the Innx ðXÞ-action. By Lemma 6.2, it is
compatible with the braiding and then TðVÞ=J is a braided Hopf algebra. Last, we
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show that abacabacdedf does not vanish in BðVÞ: it is straightforward to
see that

@a@b@a@c@a@b@a@c@d@e@d@f ðabacabacdedf Þ ¼ 1:

Now, we conclude by Theorem 6.4, part (2). &

To realize this example, one can take G ¼ S4; g ¼ ð1 2Þ; w ¼ sgn: Then V ¼
Mðg; wÞAG

GYD is isomorphic to ðCX ; cqÞ: We get a pointed Hopf algebra BðVÞ#CG

whose dimension is 576� 24 ¼ 2933: One can construct also a family of link-
indecomposable pointed Hopf algebras taking as group S4 � Cm; where Cm is the
cyclic group of m elements and m is odd. Let g ¼ ð1 2Þ � t (t is a generator of Cm)
and let the character w be the product sgn� e (e is the trivial character). Then
V ¼ Mðg; wÞ is again isomorphic to ðCX ; cqÞ and we get a pointed Hopf algebra of

dimension 2933m:

6.3.2. Nichols algebra related to the faces of the cube

Let X ¼ fa; b; c; d; e; f g be the polyhedral crossed set of the faces of the cube (that
is, the 4-cycles in S4), where fa; f g; fb; eg; fc; dg are the pairs of opposite faces and
ax b ¼ c: Consider the braided vector space ðV ; cÞ ¼ ðCX ; cqÞ associated to the
cocycle q � �1:

By Lemmas 6.1 and 5.18, the Nichols algebra of V has the same Hilbert series as
that of the preceding example. We can indeed give the precise description of BðVÞ:

Theorem 6.12. The Nichols algebra BðVÞ can be presented by generators

fa; b; c; d; e; f g with defining relations

a2; b2; c2; d2; e2; f 2;

ec þ ce; db þ bd; fa þ af ;

ca þ bc þ ab; da þ cd þ ac; eb þ ba þ ae; fb þ ef þ be;

fc þ cb þ bf ; fd þ dc þ cf ; fe þ ed þ df ; ea þ de þ ad: ð6:2Þ

To obtain a basis, choose one element per row below, juxtaposing them from top to

bottom:

ð1; aÞ;

ð1; b; baÞ;

ð1; c; cb; cbaÞ;
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ð1; d; dc; dcbÞ;

ð1; e; edÞ;

ð1; f Þ:

Its Hilbert polynomial is then

PðtÞ ¼ ð1þ tÞð1þ t þ t2Þð1þ t þ t2 þ t3Þð1þ t þ t2 þ t3Þð1þ t þ t2Þð1þ tÞ

¼ ð1þ tÞ4ð1þ t þ t2Þ2ð1þ t2Þ2

¼ t12 þ 6t11 þ 19t10 þ 42t9 þ 71t8 þ 96t7 þ 106t6 þ 96t5 þ 71t4 þ 42t3

þ 19t2 þ 6t þ 1:

Its dimension is 2632 ¼ 576: Its top degree is 12: An integral is given by abacbadcbedf :

Proof. Again, the elements in (6.2) are easily seen to be relations in BðVÞ: Using
Gröbner bases, it can be seen that if J is the ideal generated by these elements, then
TðVÞ=J is as stated. We conclude now using Lemmas 6.1 and 5.18. &

To realize this example, one can take the G ¼ S4; g ¼ ð1 2 3 4Þ; w ¼ sgn: Then

V ¼ Mðg; wÞAG
GYD is isomorphic to ðCX ; cqÞ: We get a pointed Hopf algebra

BðVÞ#CG whose dimension is 576� 24 ¼ 2933: Also here we get a family of link-
indecomposable pointed Hopf algebras taking the group S4 � Cm (m odd), g ¼
ð1 2 3 4Þ � t (t a generator of Cm) and w ¼ sgn� e:

6.4. Some relations of Nichols algebras of affine racks

We first present relations in Nichols algebras related to affine racks. The relation
in part (1) of the following lemma is related to [MS, 5.7]; here the rack is more
general than there, there the cocycle is more general than here. Although the relation
in part (3) below has the same appearance than [MS, (5.24)], the racks and the
elements x; y are different.

Lemma 6.13. Let ðA; gÞ be an affine crossed set. Let q � q and ðV ¼ CA; cqÞ the

corresponding braided vector space.

(1) Let x1; x2AA and q ¼ �1: Define inductively the elements xiAA (iX3) by xi ¼
xi�1 x xi�2: Let n be the minimum positive integer such that

x2 � x1Aker
Pn�1

i¼0 ð�gÞi: Then in BðVÞ we have the relation

x2x1 þ x3x2 þ?þ xnxn�1 þ x1xn ¼ 0:

Furthermore, taking different pairs ðx2; x1Þ; this is a basis of the relations in

degree 2. In other words, consider in A � A the relation ðx2; x1ÞBða; bÞ if
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there exists mAN such that ða; bÞ ¼ ðxm; xm�1Þ; where the xi’s are defined as

above. Then B is an equivalence relation, and the dimension of the space of

relations of BðVÞ in degree 2 (i.e., the kernel of the multiplication V#V-BðVÞ)
coincides with the number of equivalence classes jA � A=Bj:

(2) If �q is a primitive cth root of unity, then the relations in degree 2 are the

chains

x2x1 þ ð�qÞx3x2 þ ð�qÞ2x4x3 þ?þ ð�qÞn�1
x1xn

such that cjn: The elements xiAA and nAN are defined as in part (1).
(3) If ð1� g þ g2 � g3Þðx � yÞ ¼ 0 and q ¼ �1; then in the Nichols algebra BðVÞ we

have the relation

xyxy þ yxyx ¼ 0:

The element xyxy þ yxyx is homogeneous with respect to the Innx ðAÞ-grading.

Furthermore, in the algebra #B2ðVÞ (see Theorem 6.4) the element xyxy þ yxyx is

primitive. In other words, if Q+Q2 is an Innx ðAÞ-homogeneous coideal, then the

ideal generated by Q þ Cðxyxy þ yxyxÞ is also an Innx ðAÞ-homogeneous coideal.
(4) If ð1� g þ g2Þðx � zÞ ¼ ð1� g þ g2Þðy � zÞ ¼ 0 and q ¼ �1; then in the Nichols

algebra BðVÞ we have the relation

xyzxyz þ yzxyzx þ zxyzxy ¼ 0:

The element xyzxyz þ yzxyzx þ zxyzxy is homogeneous with respect to the

Innx ðAÞ-grading. Furthermore, in the algebra #B2ðVÞ (see Theorem 6.4) the

element xyzxyz þ yzxyzx þ zxyzxy is primitive. In other words, if Q+Q2 is an

Innx ðAÞ-homogeneous coideal, then the ideal generated by Q þ Cðxyzxyz þ
yzxyzx þ zxyzxyÞ is also an Innx ðAÞ-homogeneous coideal.

Proof

(1) It is easy to see by induction that

xt ¼
Xt�2

i¼0

ð�gÞiðx2 � x1Þ þ x1:

Then xn x xn�1 ¼ xnþ1 ¼ x1 and x1 x xn ¼ xnþ2 ¼ x2: It is easy to see that, g

being invertible, the chain corresponding to x0
1 ¼ xt; x0

2 ¼ xtþ1 is exactly the

same. This is because xtþ1 � xt ¼ ð�gÞt�1ðx2 � x1Þ: This proves that the relation
B is an equivalence relation. On the other hand, the relations in degree 2 are
exactly the kernel of 1þ c: Thus, we compute

ð1þ cÞðx2x1 þ x3x2 þ?þ x1xnÞ

¼ x2x1 � x3x2 þ x3x2 � x4x3 þ?þ x1xn � x2x1

¼ 0:
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Observe that for x1 ¼ x2 ¼ x the minimum n is 1 and we get the relation x2 ¼ 0:
To see that these relations generate all the relations in degree 2, let us take, for a
(not necessarily primitive) nth root of unit z; the vector

x2x1 þ zx3x2 þ z2x4x3 þ?þ zn�1x1xn:

It is clear that this vector is an eigenvector of c with eigenvalue �1
z : Thus, each of

the strings ðx1; x2;y; xnÞ occurs n times, one for each nth root of unity, and each
of these times with a different eigenvalue. By a dimension argument, we have
diagonalized c and we have picked up the eigenspace associated to �1:

(2) The same eigenvectors found in the previous part are eigenvectors here, though
their eigenvalues are q=z: Thus, for a chain of length n to be a relation, one must
have q=z ¼ �1; i.e., �q must be an nth root of unity.

(3) Let z ¼ yx x; w ¼ zx y: By the previous part, we have in BðVÞ

x2 ¼ y2 ¼ z2 ¼ w2 ¼ 0; yx þ zy þ wz þ xw ¼ 0:

Let us apply now @y to the alleged relation. We get

@yðxyxy þ yxyxÞ ¼ xzy þ xyx � zyz � yxz ¼ xðzy þ yxÞ � ðzy þ yxÞz

¼ � xðwz þ xwÞ þ ðwz þ xwÞz ¼ �xwz þ xwz ¼ 0:

Analogously, @xðxyxy þ yxyxÞ ¼ 0: If aax; aay; then @aðxyxy þ yxyxÞ ¼ 0 as well.
This shows that xyxy þ yxyx ¼ 0 in BðVÞ; but we have claimed a stronger fact. To
see that xyxy þ yxyx is primitive modulo J2; we must prove that in TðVÞ we have

Dðxyxy þ yxyxÞAðxyxy þ yxyxÞ#1þ 1#ðxyxy þ yxyxÞ þ TðVÞ#J2 þ J2#TðVÞ:

Now, D is a graded map: D ¼ "n;mDn;m; where Dn;m : TnþmðVÞ-TnðVÞ#TmðVÞ:
We must prove then that the images of xyxy þ yxyx by D1;3; D2;2 and D3;1 lie in
TðVÞ#J2 þ J2#TðVÞ: The previous argument, with derivations, shows that
D3;1ðxyxy þ yxyxÞAJ2#V : For the others, let us introduce the following notation:
if mAN; we take the basis fx1?xm j xiAA 8ig of TmðVÞ: Let fðx1?xmÞn j xiAA 8ig
be the dual basis, and let @x1?xm

¼ ðid#ðx1?xmÞnÞ 3 D: These maps are skew
differential operators of degree m and for m ¼ 1 they coincide with the derivations.
We have then for WATnðVÞ;

Dn�m;mðWÞ ¼
X

x1AA;y;xmAA

@x1?xm
ðWÞ#ðx1?xmÞ:

We prove now that D2;2ðxyxy þ yxyxÞATðVÞ#J2 þ J2#TðVÞ: Clearly, Dabðxyxy þ
yxyxÞ ¼ 0 unless fa; bgDfx; yg: Since xx and yy are in J2; it is sufficient to see that
the image of xyxy þ yxyx by @xy and @yx lies in J2: Let t ¼ xx y and s ¼ tx x: Then
st þ tx þ xy þ ysAQ2: Furthermore, xx z ¼ xx ðyx xÞ ¼ ðxx yÞx ðxx xÞ ¼
tx x ¼ s: Now, it is straightforward to check that @xyðxyxy þ yxyxÞ ¼ st þ tx þ
xy þ ysAJ2: The computation for @yx is analogous. Finally, it is easy to see that
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@xyxðxyxy þ yxyxÞ ¼ @yxyðxyxy þ yxyxÞ ¼ 0; which proves that D1;3ðxyxy þ
yxyxÞATðVÞ#J2 þ J2#TðVÞ:

It remains to be proved that xyxy þ yxyx is Innx ðAÞ-homogeneous. This is

equivalent to prove that fxfyfxfy ¼ fyfxfyfx: Take aAA: We have fxfyðaÞ ¼
ð1� gÞx þ gð1� gÞy þ g2a; and then

fxfyfxfyðaÞ ¼ ð1þ g2Þð1� gÞx þ gð1� gÞð1þ g2Þy þ g4a

¼ x � g4y þ gð1� g þ g2Þðy � xÞ þ g4a ¼ x � g4y þ ðy � xÞ þ g4a

¼ y � g4y þ g4a

Analogously, fyfxfyfxðaÞ ¼ x � g4x þ g4a: Then

fxfyfxfyðaÞ � fyfxfyfxðaÞ ¼ ð1� g4Þðy � xÞ ¼ 0:

(4) Let us define the following elements in A:

h ¼ yx z ¼ ð1� gÞy þ gz;

s ¼ xx y ¼ ð1� gÞx þ gy;

t ¼ xx h ¼ ð1� gÞx þ y � ð1� gÞz;

r ¼ xx z ¼ ð1� gÞx þ gz;

b ¼ xx ðyx rÞ ¼ x þ y � z:

One can check that t ¼ sx r; b ¼ yx t: It is straightforward to check that any two of

these elements satisfy that their difference lies in the kernel of 1� g þ g2: This is so
because each of these is an affine combination of x; y; z whose parameters are

polynomials in g (and any such polynomial leaves kerð1� g þ g2Þ invariant). By the

first part, we have the following relations in #B2ðVÞ:

x2 ¼ y2 ¼ z2 ¼ h2 ¼ s2 ¼ t2 ¼ r2 ¼ 0;

hy þ yz þ zh ¼ sx þ xy þ ys ¼ tx þ xh þ ht ¼ rx þ xz þ zr ¼ 0; ð6:3Þ

sr þ rt þ ts ¼ by þ yt þ tb ¼ zsz � szs ¼ 0:

Notice that for any two of these elements, say x1; x2; if we put x3 ¼ x2 x x1 we then
get x2x1 þ x3x2 þ x1x3 ¼ 0; and then, since x2

1 ¼ x2
2 ¼ 0; we have x1x2x1 ¼ x2x1x2:
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This explains the relation zsz � szs ¼ 0 above. As in the previous case, we must
prove that the image of xyzxyz þ yzxyzx þ zxyzxy by D1;5; D2;4; D3;3; D4;2

and D5;1 lies in J2#TðVÞ þ TðVÞ#J2: This is a very long computation, but
it is straightforward and we give only two examples: for D5;1 we apply @x and
for D3;3 we apply @xyx and @yxy: Let us call W ¼ xyzxyz þ yzxyzx þ zxyzxy:
We have

@xðWÞ ¼ �srxsr þ xyzsr � yzsrx þ yzxyz þ zsrxs � zxyzs;

@xyxðWÞ ¼ txb þ yzt � ztx;

@yxyðWÞ ¼ xhb � hby � zxh:

It can be seen that relations (6.3) imply that the first of these elements lies in J2: The
second and third elements do not lie in J2; however, since modulo J2 we have
xyx ¼ yxy; in the image by D3;3 we have

@xyxðWÞ#xyx þ @yxyðWÞ#yxy

¼ ðtxb þ yzt � ztx þ xhb � hby � zxhÞ#xyx modulo TðVÞ#J2:

Now, it can be seen that relations (6.3) imply that txb þ yzt � ztx þ xhb � hby � zxh

lies in J2: The proof that W is Innx ðAÞ-homogeneous is analogous to that of
xyxy þ yxyx being homogeneous in part (3). &

Remark 6.14. If A ¼ Fpt ; g is the multiplication by wa� 1; then the minimum

n in part (1) of the Lemma is always the order of �w as a root of unit in Fpt ; except

for x1 ¼ x2 ¼ x: We have then exactly pt þ p2t�pt

n
independent relations in degree 2,

and therefore the dimension of B2ðVÞ is n�1
n
ðp2t � ptÞ: If w ¼ �1; we have the same

result with n ¼ p ¼ charðFptÞ: Furthermore, if n ¼ 4 then we can apply part (3) for

any two elements x; yAA: If n ¼ 3 then we can apply part (4) for any three elements
x; y; zAA:

6.5. Examples of Nichols algebras and pointed Hopf algebras on affine racks

We present here two examples. In both we have relations given by Lemma 6.13.

6.5.1. Nichols algebra related to the vertices of the tetrahedron [G1]

Let X ¼ f1; 2; 3; 4g be the polyhedral crossed set of the vertices of the tetrahedron
and consider the braided vector space ðV ; cÞ ¼ ðCX ; cqÞ associated to the cocycle
q � �1:
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Theorem 6.15. The Nichols algebra BðVÞ can be presented by generators f1; 2; 3; 4g
with defining relations

12; 22; 32; 42;

31þ 23þ 12; 41þ 34þ 13; 42þ 21þ 14; 43þ 32þ 24;

321321 þ 213213 þ 132132: ð6:4Þ

To obtain a basis, choose one element per row below, juxtaposing them from top to

bottom (e is the unit element):

ðe; 1Þ;

ðe; 2; 21Þ;

ðe; 321Þ;

ðe; 3; 32Þ;

ðe; 4Þ:

Its Hilbert polynomial is then PðtÞ ¼ t9 þ 4t8 þ 8t7 þ 11t6 þ 12t5 þ 12t4 þ 11t3 þ
8t2 þ 4t þ 1: Its dimension is 72; its top degree is 9, an integral is given by 121321324:

Proof. As explained in Remark 1.26, the tetrahedron crossed set coincides with the

affine crossed set ðF4;wÞ; where w2 þ w þ 1 ¼ w2 � w þ 1 ¼ 0: Cases (1) with n ¼ 3
and (4) of Lemma 6.13 apply immediately and we see that the elements in (6.4) are
relations in BðVÞ: Let J be the ideal generated by these elements. It can be seen that
J is Innx ðX Þ-stable. Since by Lemma 6.13 part (4) the element 321321 þ 213213 þ
132132 is Innx ðXÞ-homogeneous and Q2 is compatible with the braiding, then J is
compatible with the braiding. Moreover, by Lemma 6.13 part (4) again, it is a
coideal. Now, it is straightforward to see that

@1@2@3@4@2@4@3@4ð121321324Þ ¼ 2AC:

We now use Theorem 6.4 part (2). &

To realize this example, one can take the affine group F4sF�4 CA4 and its direct

product with C2: That is, we take G ¼ A4 � C2: Denote by t the generator of C2 and

let g ¼ ð1 2 3Þ � tAG: Take wAĜ; wðs� tiÞ ¼ ð�1Þi: Then V ¼ Mðg; wÞAG
GYD is

isomorphic to ðCX ; cqÞ: We get a pointed Hopf algebra BðVÞ#CG whose dimension

is 72� 24 ¼ 2633: We get a family of link-indecomposable pointed Hopf
algebras replacing C2 by Cm (m even), g ¼ ð1 2 3Þ � t (t a generator of Cm) and

wðs� tiÞ ¼ ð�1Þi:
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6.5.2. Nichols algebra related to the affine crossed set ðZ5; x 2Þ
Let X ¼ f0; 1; 2; 3; 4g be the affine crossed set ðZ5; x 2Þ and consider the braided

vector space ðV ; cÞ ¼ ðCX ; cqÞ associated to the cocycle q � �1: That is, cði#jÞ ¼
�ð2j � iÞ#i:

Theorem 6.16. The Nichols algebra BðVÞ can be presented by generators f0; 1; 2; 3; 4g
with defining relations

02; 12; 22; 32; 42;

32þ 20þ 13þ 01; 40þ 21þ 14þ 02; 41þ 34þ 10þ 03;

42þ 30þ 23þ 04; 43þ 31þ 24þ 12;

1010þ 0101: ð6:5Þ

To obtain a basis, choose one element per row below, juxtaposing them from top to

bottom (e is the unit element):

ðe; 0Þ;

ðe; 1; 10; 101Þ;

ðe; 2; 21; 212; 20; 201; 2012; 2010; 20102; 201020Þ;

ðe; 3; 31; 312; 30; 303; 3031; 30312Þ;

ðe; 4Þ:

Its Hilbert polynomial is then

PðtÞ ¼ ð1þ tÞ2ð1þ t þ t2 þ t3Þð1þ t þ 2t2 þ 2t3 þ 2t4 þ t5 þ t6Þ

� ð1þ t þ 2t2 þ 2t3 þ t4 þ t5Þ

¼ t16 þ 5t15 þ 15t14 þ 35t13 þ 66t12 þ 105t11 þ 145t10 þ 175t9 þ 186t8 þ 175t7

þ 145t6 þ 105t5 þ 66t4 þ 35t3 þ 15t2 þ 5t þ 1:

Its dimension is 1280: Its top degree is 16: An integral is given by 0101201020303124:

Proof. The relations are given by Lemma 6.13, parts (1) and (3). By the same result,
if J is the ideal generated by (6.5) then it is a homogeneous coideal. It is not difficult
to see that it is also Innx ðX Þ-stable, whence it is compatible with the braiding. Using
Gröbner bases, it can be seen that relations (6.5) yield the stated dimensions in each
degree. Using Theorem 6.4 part (2), it is sufficient to see that 0101201020303124 does
not vanish in BðVÞ in order to prove the Theorem. It is straightforward then to
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compute that

@1@0@4@1@4@2@3@4@2@4@3@2@3@4@3@4ð0101201020303124Þ ¼ 1AC: &

To realize this example, one can take the group G ¼ Z=5sðZ=5Þ�; wðða; 2jÞÞ ¼
ð�1Þj ; g ¼ ð0; 2Þ: Then V ¼ Mðg; wÞAG

GYD is isomorphic to ðCX ; cqÞ: We get a

pointed Hopf algebra BðVÞ#CG whose dimension is 1280� 20 ¼ 21052: We get a

family of link-indecomposable pointed Hopf algebras replacing ðZ=5Þ� by C4m;

where a generator t of C4m acts as 2, i.e., tit�1 ¼ 2i for iAZ=5: Then take g ¼ 0� t;

wði � tjÞ ¼ ð�1Þj ; V ¼ Mðg; wÞAG
GYD: The algebra BðVÞ#CG has dimension

21052m:

6.6. A freeness result for extensions of crossed sets

The concept of extension of crossed sets is not only useful in classification
problems of them. It turns out to be useful as well when one wants to compute
Nichols algebras, as the following Proposition asserts.

Let X ;Y be quandles and let X-Y be a surjective quandle homomorphism. We
assume that X is indecomposable, hence Y is also indecomposable and XCY �a S

for some dynamical 2-cocycle a and some set S (see Definition 2.2). Let q : Y �
Y-GN be a 2-cocycle. Notice that qii ¼ qjj for all i; jAY : Let *q be the pull-back of q

along p; that is *qxy :¼ qpðxÞ;pðyÞ: Let ðV ; cÞ ¼ ðCX ; c*qÞ; ðV 0; c0Þ ¼ ðCY ; cqÞ: Let PV ðtÞ
be the Hilbert series of BðVÞ and PV 0 ðtÞ the Hilbert series of BðV 0Þ:

Proposition 6.17.

(1) If the order of qii is 43 and card SX2 then dimBðVÞ ¼ N: If the order of qii is 3
and card SX3 then dimBðVÞ ¼ N:

(2) Let PSðtÞ be the Hilbert polynomial of BðWÞ; where ðW ; cW Þ ¼ ðCS; cqiiÞ (i.e., the

cocycle is the constant qiiÞ). Then PS j PV :
(3) If a is a constant cocycle, PV 0 j PV :

Proof. (1) follows easily from [G1, Lemma 3.1]. (2) follows at once from [G2,
Theorem 3.8.1]. (3) can be proved using a remark right after the proof of [MS,
Theorem 3.2]. Actually, this remark is a generalization of Theorem 3.2 in [MS],
which in turn is a generalization of [G2, Theorem 3.8.1]. The remark goes as follows:

let ðR; cÞ; ðR0; c0Þ be braided Hopf algebras with maps R0 -
i

R-
f

R0 of algebras and
coalgebras such that fi ¼ id; and such that

ði#idÞc0ðf#idÞ ¼ ðid#fÞcðid#iÞ; cðif#idÞ ¼ ðid#ifÞc: ð6:6Þ

Let r : R-R#R0; r ¼ ðid#fÞDR; and let K ¼ RcoR0 ¼ frAR j rðrÞ ¼ r#1g: Then
the conditions on i and f are sufficient to prove that m : K#R0-R; m ¼ mRðid#iÞ
is an isomorphism.
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Thus, we can find i :BðV 0Þ-BðVÞ and f :BðVÞ-BðV 0Þ satisfying the previous
conditions. By the definitions of Nichols algebras, to give an algebra and coalgebra
map it is enough to give the maps at degree 1 and verify that they commute with the

braidings. That is, V 0 -
i

V -
f

V 0 such that cði#iÞ ¼ ði#iÞc0 and similarly with f:

We take iðyÞ ¼ 1
jSj
P

pðxÞ¼y x; fðxÞ ¼ pðxÞ: It is immediate to see that i and f

commute with the braidings, using that p is a map of crossed sets and *q ¼ p�1ðqÞ:
The conditions in (6.6) are also easy to verify; for the second one it is used that a is a
constant cocycle. &
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