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Abstract

A fundamental step in the classification of finite-dimensional complex pointed Hopf
algebras is the determination of all finite-dimensional Nichols algebras of braided vector
spaces arising from groups. The most important class of braided vector spaces arising from
groups is the class of braided vector spaces (CX, ¢?), where X is a rack and ¢ is a 2-cocycle on
X with values in C*. Racks and cohomology of racks appeared also in the work of
topologists. This leads us to the study of the structure of racks, their cohomology
groups and the corresponding Nichols algebras. We will show advances in these three
directions. We classify simple racks in group-theoretical terms; we describe projections of
racks in terms of general cocycles; we introduce a general cohomology theory of racks
containing properly the existing ones. We introduce a ‘“Fourier transform” on racks
of certain type; finally, we compute some new examples of finite-dimensional Nichols
algebras.
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0. Introduction

1. This paper is about braided vector spaces arising from pointed Hopf algebras,
and their Nichols algebras. Our general reference for pointed Hopf algebras is
[AS2]. wE SHALL work over the field C of complex numbers; many results
below are valid over more general fields. We denote by G ., the group of roots of
unity of C.

2. The determination of all complex finite-dimensional pointed Hopf algebras H
with group of group-likes G(H) isomorphic to a fixed finite group I' is still
widely open. Even the existence of such Hopf algebras H (apart from the
group algebra CI') is unknown for many finite groups I'. If I' is abelian,
substantial advances were done via the theory of quantum groups at roots of
unit [AS1]. The results can be adapted to a non-necessarily abelian group I': if
(aii)lgi,jée is a finite Cartan matrix, g, ...,gy are central elements in I', and
%15 ---» 1o are multiplicative characters of I', such that y;(g;)x,(9:) = 7:(9:)" (plus
some technical hypotheses on the orders of y;(g;)), then a finite-dimensional
pointed Hopf algebra H with group G(H)~I can be constructed from this
datum. Besides these, only a small number of examples have appeared in print;
in these examples, I' is S3, S4, D4 (see [MS]), Ss (using [FK]), A4 x Z/2
(see [G1]).

3. An important invariant of a pointed Hopf algebra H is its infinitesimal braiding;
this is a braided vector space, that is, a pair (¥, ¢), where V is a vector space and
ceAut(V®V) is a solution of the braid equation: (¢®id)(id®c)(c®id) =
([d®c¢)(c®id)(id®c). Let B(V) be the Nichols algebra of (V,¢), see [AS2]. If
dim H is finite, then dim B(V) is finite and divides dim H. Conversely, given a
braided vector space (¥, ¢), where V is a Yetter—Drinfeld module over the group
algebra CI', then the Radford’s biproduct, or bosonization, H = B(V)#CI is a
pointed Hopf algebra with G(H)~TI. Thus, a fundamental problem is to
determine the dimension of the Nichols algebra of a finite-dimensional braided
vector space. We remark that the same braided vector space can arise as the
infinitesimal braiding of pointed Hopf algebras H with very different G(H), as in
the examples with Cartan matrices above. Analogously, there are infinitely many
finite-dimensional pointed Hopf algebras H, with non-isomorphic groups G(H)
and the same infinitesimal braiding as, respectively, the examples above related
to the groups Si, Ss, D4, Ss, Agx Z/2; and such that they are link-
indecomposable in the sense of [MS,M].

4. It is then more convenient to study in a first stage Nichols algebras of
braided vector spaces of group-type [G1, Definition 1.4.10]. However, there
are strong constraints on a braided vector space of group-type to have a
finite-dimensional Nichols algebra [G1, Lemma 3.1]. Briefly, we shall consider
in this paper the class of braided vector spaces of the form (CX,c%);
where (X, I>) is a finite rack, ¢ is a 2-cocycle with values on the multiplicative
group of invertible elements of C, and ¢? is given by ¢/(i®)) = q;; il>j®i (see
the precise definitions in the main part of the text). See also the discussion in
[A, Chapter 5].

aij
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We are faced with the following questions: to determine the general structure

of finite racks; to compute their second cohomology groups; and to decide
whether the dimensions of the corresponding Nichols algebras are finite.
. We now describe the contents of this paper. The notions of “rack” and
“quandle”, sets provided with a binary operation like the conjugation of a
group, have been considered in the literature, mainly as a way to produce knot
invariants (cf. [B,CJKLS,De,FR,J1,K,Ma]). Section 1 is a short survey of the
theory of racks and quandles, addressed to non-specialists on these structures,
including a variety of examples relevant for this paper.

The determination of all finite racks is a very hard task. There are two
successive approximations to this problem. First, any finite rack is a union of
indecomposable components. However, indecomposable racks can be put
together in many different ways, and the description of all possible ways is
again very difficult. In other words, even the determination of all indecompo-
sable finite racks would not solve the general question.

In Section 2, we describe epimorphisms of racks and quandles by general
cocycles. We then introduce modules over a quandle, resp. a rack, X. We show
that modules over X are in one-to-one correspondence with the abelian group
objects in the category of arrows over X, if X is indecomposable. Our definition
of modules over X generalizes those in [CES,CENS].

We say that a non-trivial rack is simple if it has no proper quotients. Then any
indecomposable finite rack with cardinality > 1 is an extension of a simple rack.
We study simple racks in Section 3. One of our main results is the explicit
classification of all finite simple racks, see Theorems 3.9 and 3.12. The proof is
based on a group-theoretical result kindly communicated to us by Guralnick.

After acceptance of this paper, it became to our attention Joyce’s article [J2],
where results similar to those in Section 3.2 are obtained. However, notice that
our classification in Theorem 3.9 includes more quandles than that of [J2,
Theorem 7(2)]. This is one of the reasons why we decided to leave our results.
The other reason is that, by using a result in [EGS] (which depends upon the
classification of simple groups), we can split the simple quandles into two classes
regarding their cardinality. These classes appear naturally in [J2] also, but the
fact that they are split by cardinality was impossible to prove in 1982.

It is natural to define homology and cohomology theories of racks and
quandles as standard homology and cohomology theories for abelian group
objects in the category of arrows over X [Q]. We propose in Section 4 a complex
that, conjecturally, would be suitable to compute these homology and
cohomology theories. We show that the homology and cohomology theories
known so far (see [CENS,CJKLS,FR,G1]) are special cases of ours. We discuss
as well non-abelian cohomology theories.

A braided vector space of the form (CY, ¢?) does not determine the rack ¥ and
the 2-cocycle ¢. We provide a general way of constructing two braided vector
spaces (CY,c?) and (CY,c?) where the racks Y and Y are not isomorphic in
general, but such that the corresponding Nichols algebras have the same
dimension. In our construction, Y is an extension X x, 4, where 4 is an
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X-module; Y is an extension X x B A, where A, the group of characters of 4, is also
an X-module. The construction can be thought as a Fourier transform. We show
how to use this construction to obtain new examples of pointed Hopf algebras with
non-abelian group of group-like elements. This is the content of Section 5.

In Section 6, we present several new examples of finite-dimensional Nichols
algebras B(V') over finite groups. First, we show that some Nichols algebras can
be computed by reduction to Nichols algebras of diagonal type, via Fourier
transform. Next we use Fourier transform again to compute a Nichols algebra
related to the faces of the cube, starting from a Nichols algebra related to the
transpositions of S4 computed in [MS]. Finally, we establish some relations that
hold in Nichols algebras related to affine racks, and use them to compute Nichols
algebras related to the vertices of the tetrahedron (a result announced in [G1]) and
the affine rack (Z/5, > 2). Support to our proofs is given by Theorem 6.4 which
gives criteria to insure that a finite dimensional braided Hopf algebra is a Nichols
algebra.

In most of the paper, we shall only consider finite racks, or quandles, or crossed
sets, and omit the word “finite” when designing them, unless explicitly stated.

6. In conclusion, we remark that the next natural step in the classification of finite-
dimensional pointed Hopf algebras is to deal with Nichols algebras of braided
vector spaces arising from simple racks.

1. Preliminaries
1.1. Racks, quandles and crossed sets

Definition 1.1. A rack is a pair (X,>) where X is a non-empty set and > :
X x X — X is a function, such that

¢, X—>X, ¢;(j)=ilj, is a bijection for all ieX, (1.1)

i>(j>k)=(>j)> (i>k) VijkeX. (1.2)
A quandle is a rack (X, I>) which further satisfies
il>i=i, forallieX. (1.3)
A crossed set is a quandle (X, I>) which further satisfies
jP>i=1i whenever il>j =. (1.4)
A morphism of racks is defined in the obvious way: ¥ : (X, >)—(Y,>) is a

morphism of racks if Y(il>;) = (i) > (), for all i,je X. Morphisms of quandles
(resp. crossed sets) are morphisms of racks between quandles (resp. crossed sets).
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In particular, a subrack of a rack (X, >) is a non-empty subset Y such that
YD>Y =Y. If X is a crossed set and Y is a subrack, then, clearly, it is a crossed
subset; same for quandles.

Definition 1.2. If I" is a group, any non-empty subset X =" stable under conjugation

by I’ (i.e, a union of conjugacy classes) is a crossed set with the structure i[> = iji~'.

A crossed set isomorphic to one of these shall be called standard.
A primary goal is to compare arbitrary crossed sets with standard ones.

Definition 1.3. Let (X, I>) be a rack and let Sy denote the group of symmetries of
X. By (1.1), we have a map ¢ : X >Sy. Let (X, I>) be a rack. We set

Auty (X) = {geSyx: g(i>)) = g(i)> g(j)},

Inny (X) = the subgroup of Sy generated by ¢(X).

By (1.2), Inn (X) is a subgroup of Auty (X). On the other hand, it is easy to see
that

gd)xg_] = d)g(x)v VgeAutD(X)v xeX. (15)

Therefore, ¢(X)cAuty (X) is a standard crossed subset, ¢ : X - Autp (X) is a
morphism of racks, and Innp (X) is a normal subgroup of Aut (X). It is not true in
general that Innpy (X) = Autp (X).

Example 1.4. Let X = {+i, +j}, a standard subset of the group of units of the
quaternions. Then Innp (X) #Auty (X).

Proof. It is easy to compute Auty (X) and Innp (X). One sees that Inny (X) =
(@i ;> ~Cy x Gy and Autps (X) = {¢;,¢;,00) has order 8, where ao(£i) = +j
and og(+j) = +i. O

Another basic group attached to X is the following one:

Definition 1.5 (Brieskorn [B], Fenn and Rourke [FR], Joyce [J1]). Let (X,>) be a
rack. We define the enveloping group of X as

Gy =F(X)/{xyx ' =xD>y, x,yeX),

where F(X) denotes the free group generated by X. The assignment x+ ¢, extends
to a group homomorphism 7y : Gy —» Inny (X); the kernel of ny is called the defect
group of X in the literature and coincides with the subgroup I' considered in [So,
Theorem 2.6].
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The name ‘“‘enveloping group” is justified by the following fact, contained
essentially in [J1]:

Lemma 1.6. The functor X — Gy is left adjoint to the forgetful functor Hv— §H from
the category of groups to that of racks. That is,

Homgroups(GXa H) = Homracks(Xa %H)
by natural isomorphisms.

Proof. Easy. [l

The definition of rack was proposed a long time ago by Conway and Wraith, see
the historical account in [FR]. Quandles were introduced independently in [J1,Ma]
and studied later in [B] and other articles. They are being extensively studied
nowadays in relation with knot invariants, see [CS] and references therein. In [G1], it
was proposed to consider crossed sets with the normalizing conditions (1.3) and
(1.4); the conditions also appear in [So]. It is worth noting that in most of these
articles the quandle structure is the opposite to the one here (i.e., x*y for our
qﬁ;l (x)). Racks, quandles and crossed sets are related as follows.

1.1.1. From racks to quandles
We follow [B]. Let X be a rack and let Ci» (X) be the centralizer in Auty (X) of

Inng (X). For Y€ Cx (X), define >V by
a >V =al>y(b) = y(al>b) = y(a) > y(b). (1.6)

Then (X, D"’) is again a rack; we say that it is conjugated to (X, >) via .
Let now 1 : X —» X be given by al> 1(a) = a, which is well defined by (1.1). Then, by
(1.2),

al>b=al>(b>1(b)) = (al>b) > (al>1(d));
hence al>1(b) = 1(aP>b). In particular, a = 1(aP>a), and 1 is surjective. Also,
al> (1(a)>1(b)) = (al>1(a)) > (al> 1(h)) = al> (aP>1(D)),

so that, by (1.1), 1(a)>1(b) = aP>1(b) = 1(a>b). Suppose now that i(a) = 1(d).
Then

a=al>i(a) =1(a)>1(a) = 1(b)>1(b) = b.

That is, 1 is injective, and belongs to C» (X). We can then consider (X, '), which
is a quandle.

In conclusion, any rack (X, [>) is conjugated to a unique quandle, called the
quandle associated to (X,>). If F: X— Y is a morphism of racks, then Fi = 1F;
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hence F is a morphism of the associated quandles. It follows that
Autpy (X)~Aut »:(X). (But Inn (X) and Inn . (X) may be very different).

1.1.2. From quandles to crossed sets

We exhibit a functor Q from the category of finite quandles to that of crossed sets,
which assigns to a quandle X a quotient crossed set Q(X) with the expected universal
property: any morphism of quandles X' — Y is uniquely factorized through Q(X)
whenever Y is a crossed set. To see this, take on X ~ as the equivalence relation
generated by

x~x if Iy st. xD>y=yp and y>x=x. (1.7)

Then ~ coincides with the identity relation if and only if X is a crossed set. Take
X; = X/~. We must see that X7 inherits the structure of a quandle. First, suppose
x,x',y are as in (1.7). Then x' >y = (y>x)> (y>y) = y> (x> y) = y. Next, for
ze X, we have

X)) =X Dy)> D>z =xD> (y>2)
=B Pz =y (xP>2),

whence we see that ¢, = ¢,,, and then ¢, = ¢, for any x” ~x. Thus, it makes sense
to consider > : (X/~) x X —» X. Finally, we have for ze X,

B x)D> (zDy) =zD (xDy) = (zDy)
and
> y)> (D x) =z (D> x) = (2> X).

Then (zP>x)~(zP>>X/), and it makes sense to consider [> :(X/~)x
(X/~)—(X/~). If X; is not a crossed set then take X, = X|/~, and so on. Since
X is finite, we must eventually arrive to a crossed set. The functoriality and universal
property are clear.

1.2. Basic definitions

We collect now a number of definitions and results; many of them appear already
in previous papers on racks or quandles, see [B,CJKLS,FR,J1].
We shall say that X is trivial if il>j =j for all i,je X.

Lemma 1.7. Let (X, >>) be arack, H a group and ¢ : X — H an injective morphism of
racks such that the image is invariant under conjugation in H (thus (X, ) is actually a
crossed set). Then the map ¢ : H— Sy, given by ¢u(x) = ¢~ (hop(x)h™"), is a group
homomorphism and its image is contained in Auty (X).

Proof. Left to the reader. O
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The assignment X — Innp (X) is not functorial in general; just take ie X with
¢,;#1d; the inclusion {i} = X does not extend to a morphism Innp ({i}) - Inny (X)
commuting with ¢. But we have:

Lemma 1.8. Ifn: X - Y is a surjective morphism of racks, then it extends to a group
homomorphism Innp (%) : Inn (X) - Inny (7).

Proof. Let Innp (%) be defined on ¢(X) by Innp (7)(d(x)) = ¢(n(x)). Tt is well
defined and it extends to a morphism of groups since 7 is surjective. [l

We determine now the structure of Innp (X) when X is standard.

Lemma 1.9. Let H be a group and let X = H be a standard subset.

(1) Inn (X)~C/Z(C), where C = { X ) is the subgroup of H generated by X , which
is clearly normal.

(2) If X generates H then Innp (X)~H/Z(H).

(3) If H is simple non-abelian and X #{1}, then H = Inn (X).

Proof. We prove (2); (1) and (3) will follow. By Lemma 1.7, we have a morphism
Y : H—Aut (X), whose image is Inny(X). Now, heker(y)<hxh™' =
xVxeX<heZ(H). O

Corollary 1.10. Let X be a rack, let H be a group and let \y : X — H be a morphism. If
Z({W(X) ) is trivial, then  extends to a morphism ¥ : Inn (X) > H.

Proof. If ¥ = y(X), then ¥ : Inns (X) ™5 Innp (Y)~ <YYo H. O

The map ¢ : X —»Innp (X) is not injective, in general.

Definition 1.11. We shall say that the rack (X, > ) is faithful when the corresponding
¢ is injective. Observe that in this case X is a crossed set, since it is standard.

Remark 1.12. If (X, >) is faithful then the center of Inny (X) is trivial. More
generally, if ze Z(Innp (X)), then ¢.; = ¢, for all ie X.

Definition 1.13. A decomposition of a rack (X, [>) is a disjoint union X = YuUZ
such that Y and Z are both subracks of X. (In particular, both Y and Z are non-
empty). X is decomposable if it admits a decomposition, and indecomposable
otherwise.

The image of an indecomposable rack under a morphism is again in-
decomposable.
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We shall occasionally denote i" > j := ¢/ (j), neZ. The orbit of an element x€ X is
the subset

Oy = {iF'D> EV D> (L GE D> X)) | e e X
That is, Oy is the orbit of x under the natural action of the group Innp (X). (If X is
finite, then Oy = {i;I> (i1 > (... (41 > x)...)) | i1, ..., ,EX}).

Lemma 1.14. Let (X, D> ) be a rack, Y # X a non-empty subset and Z = X — Y. Then
the following are equivalent:

(1) X = YuZ is a decomposition of X.
Q) Y>ZSZand Z>Y<Y
3) xXb>ycvy.

Proof. Easy. [

Lemma 1.15. Let (X, D>) be a rack. Then the following are equivalent:

(1) X is indecomposable.
(2) X = 0O, for all (for some) xe X.

Proof. Easy. [l

Note that a standard crossed set X < H need not be indecomposable, even if it
consists of only one H-orbit. However, it is so when H is simple by Lemma 1.9.

Example 1.16. If X < H is a conjugacy class with two elements, then it is trivial as
crossed set. As another example, take 4 an abelian group and G the group of
automorphisms of 4; let H = A>< G, and let X = 4 be any orbit for the action of G.
Let 15€ G be the unit and consider X =« H as X >11g. Then X is trivial.

Proposition 1.17. Any rack X is the disjoint union of maximal indecomposable
subracks.

Proof. Given Y < X a subset, consider
Y =Yu(YD>Y)u(Y 'DY)=Yu{yDz|yzeY}u{y 'D>z|yzeY})

Then Y'Y and any subrack of X containing Y contains Y’. The subrack generated
by Y is thus |, Y”, where Y"*! = (Y")" and Y'! = Y. This is the smallest subrack
of X containing Y.

For YcX, we say that it is connectable if for any two elements y;,y,eY
there exist uj',...,uf, where wu;€Y and ¢e{£1} Vi, such that y,=
ui' > (uz B> - (ufr B> p1)) (here the intermediate elements uf' D> (7] D> - (ufr D> yy))
may not belong to Y). Then it is easy to see that if Y is connectable then so is Y.
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Hence, for Y connectable, the subrack generated by Y is connectable and, being a
subrack, it is indecomposable. Also, since the union of intersecting indecomposable
subracks is connectable, we see that they generate an indecomposable subrack.
Hence the indecomposable component of xe X, the union of all indecomposable
subracks containing x, is an indecomposable subrack. Now, X is the disjoint union
of such components. [

Unlike the situation of Lemma 1.14, the indecomposable components may not be
stable under the action of X. The case of two components is more satisfactory
because we can describe how to glue two racks.

Lemma 1.18.

(1) Let Y,Z be two racks and X = YU Z be their disjoint union. The following are
equivalent:
(a) Structures of rack on X such that X = Y UZ is a decomposition.
(b) Pairs (0,7) of morphisms of racks ¢: Y - Autys (Z), 1: Z— Auty (Y) such
that

vy (u) =15, (0Pu), VyueY, zeZ, ie, ¢, =1,0)0,; (1.8)
Do (W) =0, )(zDw), VyeY, z,weZ, e, ¢.0p =0, (¢, (1.9)

(2) Assume that Y and Z are crossed sets and (1.8), (1.9) hold. Then X is a crossed set
exactly when

0,(z) =z if and only if 1.(y) =y, VyeY, zeZ. (1.10)

Proof. Left to the reader. [

If the conditions of the lemma are satisfied, we shall say that X is the amalgamated
sum of Y and Z. If ¢ and t are trivial, we say that X is the disjoint sum of Y and Z.
Clearly, one can define the disjoint sum of any family of racks (resp. quandles,
crossed sets).

For example, let X be a rack (resp. quandle, crossed set) and set X x 2 =2X =
X x {1,2}; this is a rack (resp. quandle, crossed set) with (x,7)> (y,j) = (x> y,j),
and 2X = X; U X3 is a decomposition, where X; = X x {i}. Note that ¢, = ¢ ;
¢ is not injective. In an analogous way, we define the crossed set nX', for any positive
integer n. More generally, we have

Example 1.19. Let X, Y be two racks (resp. quandles, crossed sets). Then X x Y isa
rack (resp. quandle, crossed set), with (x, y) > (u,v) = (x> u, y> v); this is the direct
product of X and Y in the category of racks (resp. quandles, crossed sets).
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Lemma 1.20. Let X, Y be two racks (resp. quandles, crossed sets). If X x Y is
indecomposable then X and Y are indecomposable. The converse is true if X or Y is a
quandle.

Proof. Since the canonical projections X x Y—>X and X x Y- Y are rack
homomorphisms, the first statement is immediate. For the second one, let
(x1,31), (x2,2)eX x Y. As X,Y are indecomposable, there exist uj',...,uS,
vi‘, ...,vf,’;” where wu;eX, v;eY and s,-,s_;e{il} Vi,j, such that x;=
Ui D> (U2 > - (> x1)) and yp = o) > (032 > - (vf > y1)). Suppose X is a quandle.
Adding if necessary at the end of the sequence in Y pairs yj,y;!, we may suppose
that m>n. Adding if necessary at the end of the sequence in X elements x;, we may
suppose that m = n. Then,

(2, 32) = (!, v} ) B> (2, 052 ) B> - (i, i) B> (1, 31))). O

Let X be a rack, take ¢ : X —Innp (X) as usual. Let us abbreviate F, == ¢~ (y), a
fiber of ¢. If X is a quandle, any fiber F, is a trivial subquandle of X

Lemma 1.21. (1) For x,ye ¢(X) the fibers F, and Fyr,, have the same cardinality.
(2) If X is an indecomposable crossed set, then the fibers of ¢ all have the same
cardinality.

Proof. We claim that iD>F,cFy >, Indeed, if jeF),, then ¢;.; = ¢i¢j¢;1 =
d)iy(jbi_l = ¢;> y; the claim follows. Similarly, i~! DF},QF(/)4 >, hence (1). Now (2)
follows from (1). O

We give finally some definitions of special classes of crossed sets, following
[J1].

Definition 1.22. Let (X, I>) be a quandle. We shall say that X is involutory if d)i =id
for all xe X. That is, if x[> (x>y) =y for all x,ye X.

We shall say that X is abelian if (xB>w)D> (yD>z) = (xD>y)> (wbz) for all
x,y,w,zeX.

1.3. Examples
1.3.1. A rack which is not a quandle
Take X any set and f € Sy any function. Let x>y = f(y). This is a rack, and it is

not a quandle if f#idy. This rack is called permutation rack.

1.3.2. A quandle which is not a crossed set
Take X = {x,+,—}, x>+ = F, ¢, =idy.



188 N. Andruskiewitsch, M. Graiia | Advances in Mathematics 178 (2003) 177-243

1.3.3. Amalgamated sums

Let Z be a rack; we describe all the amalgamated sums X = YuZ for Y = {0, 1}
the trivial rack. Denote Aut(Y) = {+ =id, —}. Let g, 7 be as in Lemma 1.18. First,
Z should decompose as a disjoint union of subracks Z =Z, uZ_, where 1(Z4) =
+. Second, (1.8) is equivalent to Z, being stable by gy and o;; and condition (1.9)
reads

¢160 = Go¢z, (]5201 = Gl¢z7 VZGZJM

¢.00 =01¢., ¢.01 =00, VzeZ_.

Another way to describe the situation is: Z =2, uZ_ a disjoint union; let C; =
(py, xeZ,) be the group generated by ¢, , C_ = {¢.¢,, x,yeZ_), and let

C=<{C,,C_». Then [0y,C] =1€Sy, 0, = ¢,00¢;" for any xeZ . If Z is a
quandle then X is a quandle. If Z is a crossed set then X is a crossed set iff
Z, = Z° = {fixed points of g¢} = Z°".

1.3.4. Polyhedral crossed sets

Let PcR? be a regular polyhedron with vertices X = {xy, ..., x,} and center in 0.
For 1<i<n, let T; be the orthogonal linear map which fixes x; and rotates the
orthogonal plane by an angle of 2x/r with the right-hand rule (pointing the thumb to
x;), where r is the number of edges ending in each vertex. Then (X, I>) defined by
x;> x; = Ti(x;) is a crossed set. To see this, simply take ¢ as the group of orthogonal
transformations of P with determinant 1 and notice that {7}, ..., T;,} is a conjugacy
class of %, whose underlying (standard) crossed set is isomorphic to X. It is evident
that Innp> (X) is isomorphic to the group generated by {77, ..., T,,}. It is clear that to
each polyhedron also corresponds an analogous crossed set given by the faces; it is
isomorphic to the crossed set given by the vertices of the dual polyhedron. It follows
by inspection that the crossed sets of the vertices of the tetrahedron, the octahedron,
the dodecahedron and the icosahedron are indecomposable, while that of the cube
has two components, each of which is isomorphic to the crossed set of the vertices of
the tetrahedron. It is easy to see that in the indecomposable cases the group Innp (X)
coincides with %. See Fig. 1.

1.3.5. Coxeter racks
Let (V,<,)) be a vector space over a field k, provided with an anisotropic

symmetric bilinear form {,>. Let vD>u=u— 2<<:L~v>> v. Then (V' —{0},>) is a
rack, as well as any subset closed for this operation. Particular cases of this are
the root systems of semisimple Lie algebras; the action ¢, coincides with the
action of w, € W, the Weyl group. To turn this into a quandle one can either quotient

out by the relation v~ — v, or take the conjugated quandle (¥ — {0}, I>') asin 1.1.1

(see (1.6)). It is easy to see that v >'u= 2<<LZL?>> v —u, and then this also is a

crossed set.
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@1

Fig. 1. Polyhedral crossed set of the tetrahedron.

1.3.6. Homogeneous crossed sets
Let G be a finite group and let ¢ : Sg— Fun(G, S¢) be the function given by

¢L(y) =s(yx ")x, s€Sq, x,yeG.

Then ¢).¢! = ¢, i.e., ¢ is a morphism of groups, with the pointwise multiplication
in Fun(G, Sg).

If, in addition, s : G— G is a group automorphism, then define x>y = ¢.(y) =
s(yx~)x. It is easy to see that this makes (G, I>) into a crossed set. For instance, let
us check (1.4):

xy=y < y=six Oy o ' =s(x") & w7l =s(0") e y>x=x

We shall say that (G, I>) is a principal homogeneous crossed set, and we will denote it
by (G,s).
Let t: G— G, t(x) = s(x~1)x, so that x>y = s(y) #(x). It is clear that

b= ¢ = 1(x)=1(2), (1.11)

whence the fibers as a crossed set are the same as the fibers of 7. Note that 7 is a group
homomorphism if and only if Im(¢) =Z(G), the center of G.

More generally, let H = G* be a subgroup, where G* is the subgroup of elements of
G fixed by 5. Then H\G is a crossed set, with Hx[> Hy = Hs(yx~!)x; it is called a
homogeneous crossed set.

It can be shown that a crossed set X is homogeneous if and only if it is a single
orbit under the action of Auty (X) [J1].

1.3.7. Twisted homogeneous crossed sets

In the same vein, let G be a group and se Aut(G). Take x>y = xs(yx~'). This is a
crossed set which is different, in general, to the previous one. Any orbit of this is
called a twisted homogeneous crossed set.
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1.3.8. Affine crossed sets

Let A be a finite abelian group and g : A— A4 an isomorphism of groups. The
corresponding principal homogeneous crossed set is called an affine crossed set, and
denoted by (4, g). (They are also called Alexander quandles, see e.g. [CJKLS]).

Let f =id — g, then x>y =x+g(y — x) =f(x) + g(»).

Let us compute the orbits of (4, g). Since g =id — f, we have x>y =f(x —y) +
y. It is clear then by induction that x> (x2 > -+ (x,>y))ey +f(4), whence O, =
v+ Im(f). In this case, by (1.11), indecomposable is equivalent to being faithful
(since A is finite).

We compute now when two indecomposable affine crossed sets are isomorphic.

Lemma 1.23. Two indecomposable affine crossed sets (A, g) and (B, h) are isomorphic
if and only if there exists a linear isomorphism T : A— B such that Tg = hT.

If this happens, any isomorphism of crossed sets U : (A4, g)— (B, h) can be uniquely
written as U = 1, T, where 1, : B— B is the translation 1,(x) = x+band T : A—> Bis
a linear isomorphism such that Tg = hT.

Proof. Let U:(A4,g)—(B,h) be an isomorphism of crossed sets. Since the
translations are isomorphisms of crossed sets, we decompose U = 1, T, where T is
an isomorphism of crossed sets with 7(0) = 0. Let f =id — g, k = id — h. We have

T(f(x) +9() = k(T(x)) + H(T(¥))-

Letting x = 0, we see that Tg = AT letting y = 0, we see that Tf = kT. Hence
T(f(x)+9(»)=T(f(x))+ T(g(y)). But (4,g) is indecomposable, thus f is
bijective; we conclude that T is linear. [

Remark 1.24. After we finished (the first version of) the paper, Nelson gave in [Ne] a
classification of non-indecomposable affine crossed sets.

Corollary 1.25. If (A4,g) is an indecomposable affine crossed set, then Auty (A,g) is
the semidirect product A><Aut(A)?, where Aut(A4)? is the subgroup of all linear
automorphisms of A such that Tg = gT.

Proof. Easy. [l

Notice that when (4, g) is not indecomposable, the corollary does not hold. For
instance, if g =id, then f = 0 and (4, id) is trivial, whence Auty (4,g) = Sy4.

The group Innp (4, g) is usually smaller: it can be easily shown that Inn (4,g) =
Imf><g). In fact, if aeA4 then ¢, = (f(a),g)eA>Aut(4)’. In particular,
Inng (4, g) is solvable.

Remark 1.26. We conclude that a standard crossed set (), where ¢ is a single non-
trivial orbit of a simple non-abelian group, cannot be affine; cf. Lemma 1.9.
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Similarly, let us discuss when a polyhedral crossed set X is affine. The crossed
set of vertices of the tetrahedron is affine, actually isomorphic to (4 = Z; X Z,,
g= (? })) It can be seen by hand that the crossed set of the vertices of the
cube is not affine. Indeed, it is easy to see that the underlying group A4 should
be either Z/2x Z/4 or (Z/2)’, but since Aut(Z/2 x Z/4) has order 8 and
Innp (X) has 3-torsion, the case 4 = Z/2 x Z/4 is impossible. Furthermore, one
can exclude the case A = (Z/2)® by looking at automorphisms geAut(A) s.t.
g®> =id. For the other polyhedral crossed sets, we have that Innp (X) is Sy
for the octahedron, and As for the icosahedron and the dodecahedron, so that
X is not affine.

As a particular case, let 4 =7, =7/nZ, and let geZ, such that (1 —¢)eZ,.
Then we have a structure on Z, given by

(Zp, 1), x>y =(1-q)x+qy.

This is an indecomposable crossed set, and it can be seen that
(Z,, > 1) ~(Z,, >7)<q=q (by Lemma 123, since Aut(Z,) is abelian).

It is immediate to see that (Z3, I>?) is the only indecomposable crossed set with
three elements; and that any crossed set with three elements is either trivial or
isomorphic to (Z3, >?).

It is proved in [EGS] that any indecomposable rack of prime order p is either
isomorphic to (Z,, I>?) for ge Z, or it is isomorphic to (Z,, >) with x>y =y + 1.
Indecomposable racks of order p? are classified in [G3], in particular it is proved
there that any indecomposable quandle of order p* is affine.

1.3.9. Affine racks

These are a generalization of affine quandles. Let 4 be an abelian group,
geAut(4), f eEnd(A4) be such that fg = gf and f(id — g — f) = 0. We define then on
A the structure of rack given by x>y = f(x) + ¢g(»). It is clear that 4 is a quandle iff
f =1d — g. Notice that (id — f)(id + g~'f) = id; thus id — f is an automorphism of
A. We can consider then the affine quandle (A4,id — f). It is easy to see that this
quandle is the associated quandle for the rack just defined (see (1.6)). As an example,
one can take 4 = Z,2, g =1id, f(x) = px.

1.3.10. Amalgamated unions of affine crossed sets

Let (4,9), (A,h) be two indecomposable affine crossed sets; let f,k be given by
f=id—g, k=id — h, and let 6: (4,g9) > Aut (4,h), t: (4,h) > Aut (4,g) have
the form o,=a(x)+p (e, o¢(y)=ax)+p(y) and 1,=y+6(y) (e,
7,(x) = p(x) + 6(y)) for certain fB,yeAut(4), o,0€End(4). Then by Lemma 1.23

we must have e (Aut(4))", ye(Aut(4))’ and one can verify that

(1.8) is equivalent to f —fy—0u=0, Jf—gd=0;
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(1.9) is equivalent to k—kf—ad =0, oy—ho=0;
(1.10) is equivalent to a(x)+ f(y) =y<=y(x)+6(y) = x.

Thus, the disjoint union X = (4,g)Y(A4,h) is a decomposable crossed set. For
instance, let h = —gf~! = id — f~!. We define ¢ and 7 by taking e =id, f =g,y = h,
0 =id.

If (4,¢), (B,h) are non-isomorphic indecomposable affine crossed sets, then any
amalgamated sum 4u B is not affine. This is a consequence of the following easy
lemma:

Lemma 1.27. If (A, g) is an affine crossed set, then its orbits are isomorphic as crossed
sets.

Proof. Let {xo =0, ...,x,} be a full set of representatives of coclasses in 4/Im(f).
The orbits are Im(f), Im(f) + x1, ..., Im(f) + x,,. Thus, 7; : Im(f) 4+ x; - Im(f),
7;(y) = y — x; are isomorphisms. [

1.3.11. Involutory crossed sets

This is a discretization of symmetric spaces, which we shall roughly present (see
[J1] for the full explanation). Let S be a set provided with a collection of functions
y: Z— S, called geodesics, such that any two points of S belong to the image of some
of them. Consider the affine crossed set (Z, —1). Assume that the following condition
holds: if x,yeS belong to two geodesics y and ¢/, say y(n) =y (n') = x, y(m) =
y'(m') =y, then y(nl>m) =y (W' >m'). Then we can define on S a unique binary
operation > in such a way that the geodesics respect >, namely, x>y =
y(n>m) = y(2n —m) for any geodesic y such that y(n) = x and y(m) = y. This
operation furnishes S with the structure of an involutory crossed set if it maps
geodesics to geodesics; that is, if x>y is a geodesic for any x and any y. It can be
shown that any involutory crossed set arises in this way [J1].

1.3.12. Core crossed sets

Let G be a group. The core of G is the crossed set (G, > ), where x>y = xy~lx.
The core is an involutory crossed set. If G is abelian, its core is the affine crossed set
with g = —id. More generally, one can define the core of a Moufang loop.

1.3.13. The free quandle of a set

Let C be a set and let F(C) be the free group generated by C; let ¢, denote the
orbit of ce C in F(C). We claim that the standard crossed set X¢ == J,.o O, is the
free quandle on the set C.

For, let  : C— (X, I>) be any function and let ¥ : F(C)— Innp> (X) be the unique

group homomorphism extending ¢+ ¢, ). We define then 1ﬁ :Xc— X by

v(y) =P (c), if y=ucu ', ceC.
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The well-definiteness of ¥ is a consequence of the following facts about orbits in free
groups:

(1) If ¢,deC and O, = Oy, then ¢ = d.
(2) The centralizer of ce C is {c).

It is not difficult to see that tﬁ is indeed a morphism of quandles extending y/, and the
unique one. It is easy to see that X is also the free crossed set generated by C. It is
not, however, a free rack.

2. Extensions
2.1. Extensions with dynamical cocycle

We now discuss another way of constructing racks (resp. quandles, crossed sets),
generalizing Example 1.19. The proof of the following result is essentially
straightforward.

Lemma 2.1. Let X be a rack and let S be a non-empty set. Let o.: X x X - Fun(S x
S, S) be a function, so that for each i,je X and s,te S we have an element w;(s,t)€S.
We will write a;(s) : S— S the function o;(s)(t) = a;i(s,t). Then X x S is a rack with
respect to

(ia S) > (]a Z) = (l[>]7 O(U‘(S, t))
if and only if the following conditions hold.

o;(s) is a bijection; (2.1)

o >k (8, i (8, 1)) = o> j i i (o (8, 1), e (s, 1)) Vi, j keX, s, t,ueS. (2.2)

in other words, o; > (8)0 (1) = o> j ik (% (S, 1)) ik ().
If X is a quandle, then X x S is a quandle iff further

oi(s,8) =s for all ieX and seS. (2.3)
If X is a crossed set, then X x S is a crossed set iff further

wji(t,s) = s whenever il>j = j and o;(s,t) =t Vi,jeX, s,teS. (2.4)

Proof. Easy. [

Definition 2.2. If these conditions hold we say that « is a dynamical cocycle and that
X x S is an extension of X by S; we shall denote it by X x, S. When necessary, we
shall say that « is a rack (resp. quandle, crossed set) dynamical cocycle to specify that
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we require it to satisfy (2.1)+(2.2) (resp. (2.1)+(2.2)+(2.3), (2.1)+(2.2)+
(2.3)+(2.4)). The presence of the parameter s justifies the name of “dynamical”.

Assume that X is a quandle and let « be a quandle dynamical cocycle. For ie X
consider s>t := a;(s,¢). It is immediate to see that (S, >;) becomes a quandle
Vie X. Then (2.2), when j = k, says:

aij (s, tD> ju) = ai(s, 1) > > joi(s,u), Vs, t,uesS. (2.5)

In other words, the map o;(s) is an isomorphism of quandles a;(s): (S, >;)—
S.B>in)).

The projection X x, S— X is clearly a morphism. Conversely, it turns out that
projections of indecomposable racks (resp. quandles, crossed sets) are always
extensions. Before going over this, we state a technical lemma for further use.

Lemma 2.3. Let (X, I>) be a quandle which is a disjoint union X = [,y X; such that
there exists > :Y x Y=Y with X;»>X;= Xz, Suppose that card(X;)=
card(X;) Vi,j (this holds for instance if X is indecomposable). Then (Y,I>) is a
quandle.

Furthermore, take S a set such that card(S) = card(X;) and for each i€Y set
gi: X;i—>S a bijection. Let o:Y x Y—>Fun(S x S,S) be given by o;(s,t) =
giﬁj(gi’l(s) ng’l(t)). Then o is a dynamical cocycle and X ~Y x, S.

Proof. This follows without troubles from Lemma 2.1. O

Remark 2.4. (1) Within the hypotheses of the lemma, if X is indecomposable then so
is Y.

(2) The whole lemma can be stated in terms of racks.

(3) In order to state the lemma in terms of crossed sets, it is necessary to further
assume that (Y, >) is a crossed set, i.e., that it satisfies (1.4).

Corollary 2.5. Let (X,>), (Y,>) be quandles (resp. racks, crossed sets). Let
f:X—Y be a surjective morphism such that the fibers f~'(y) all have the same
cardinality (this happens for instance if X is indecomposable). Then X is an extension
X =Y x,8.
Proof. Easy. [l

Let X be a rack. Let a: X x X >Fun(S x S,S) be a dynamical cocycle and let
y:X —>Sg be a function. Define &’ : X x X - Fun(S x S, S) by

a(s,1) =y (0 (77 (9),7 (1)), ey atyls) = v o (07 ()71 (2.6)
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Then o is a dynamical cocycle and we have an isomorphism of racks
T:(X x4, 8)> (X x4 S) given by T(i,s) = (i,y,(s)). Conversely, if there is an
isomorphism of racks 7 : (X x, S)— (X Xy S) which commutes with the canonical
projection X x S— X then there exists y: X -»Sg such that o and o are related
as in (2.6).

Definition 2.6. We say that « and o are cohomologous if and only if there exists
7: X —>Sg such that o and o/ are related as in (2.6).

Example 2.7. Let Y be the crossed set given by the faces of the cube. Then Y is the
disjoint union of the subsets made out of the pairs of opposite faces. This union
satisfies the hypotheses of Lemma 2.3 and, being indecomposable, the quotient

(X, B>) is isomorphic to the crossed set (Z3, >?).

Example 2.8. Let (4, g) be an affine crossed set. Suppose that there exists a subgroup
B< A4 invariant by g; let g be the induced automorphism of 4/B. Consider the affine

crossed set (4/B, j); the projection (4, g) —(A/B,§) is a morphism of crossed sets.

Corollary 2.5 applies and we see that A is an extension of 4/B.

More examples appear in [CHNS] by means of group extensions. They are used to
color twist-spun knots.

2.2. Extensions with constant cocycle

Let X be a rack. Let f: X x X —>Sg. We say that f is a constant rack cocycle if
ﬁi,jl>kﬁj,k = [))iDj,kaﬁi,k' (2-7)

If X is a quandle, we say that f§ is a constant quandle cocycle if it further satisfies
p;=id, VieX. (2.8)
If X is a crossed set, we say that f§ is a constant crossed set cocycle if it further satisfies
B;; = id whenever i>j =j and f;(t) =t for some t€S. (2.9)

We have then an extension X x5 S = X x, S, taking a;(s, ) = B;(¢). Note that [>;
is trivial for all i, and the fiber ng(m_) =Fy xS.

We shall say in this case that the extension is non-abelian. It is clear that an
extension X x, S is non-abelian if and only if a;(s) = a;(7) Vs, €S, Vi,jeX.

Definition 2.9. Let y: X - Sg be a function and let f# be a constant cocycle. Define
B :X x X—>Sg by

ﬁij =Yi>j :81] V;l-
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Then we have an isomorphism 7': (X x5 S)— (X xp S) given by T'(i,s) = (i,7,(s))-
In this case, we shall say that § and ' are cohomologous.

The use of the word ““cocycle” is not only suggested by its analogy with group
2-cocycles, which describe extensions: there is a general definition of abelian
cohomology (see Section 4) for which this is its natural non-abelian counterpart. The
use of the word “cocycle” in the phrase “dynamical cocycle” stands on the same
basis.

For X x4 S a non-abelian extension, let i : X —»Inny (X x; S) be given by y; =
¢,y for an arbitrary reS; that is, ¥,(j,s) = (i>/, B;(s)). Then Y(X) generates
Innp (X xg S). Let H; = {helnnp (X x5 S) | h(i,s)ei x S VseS}.

Definition 2.10. Assume that X is indecomposable. A constant cocycle ff: X X
X — Sg is transitive if for some i€ X, the group H; acts transitively on i x S. Note
that this definition does not depend on i.

We have seen that all the fibers of an indecomposable rack (resp. quandle, crossed
set) have the same cardinality; we provide now a precise description of an
indecomposable rack (resp. quandle, crossed set). Recall the map ¢: ¥ —Innp ()
from Definition 1.3.

Proposition 2.11. Let Y be an indecomposable rack (resp. quandle, crossed set), let
X =¢(Y) and let S be a set with the cardinality of the fibers of ¢. Then we have an
isomorphism T : Y — X xp S for some transitive constant cocycle p.

Conversely, a non-abelian extension X xg S is indecomposable if and only if X is
indecomposable and [ is transitive.

Proof. Choose, for each xe X, a bijection ¢, : F, = ¢’1(x)—>S. We have then a
bijection T:Y—-X xS, T(i)=(¢;,9¢,(i)). We define, for x,yeX and
SE€S, PBry(s) = gury (T (x,8)> T (y,5)). It is straightforward to see that f is a
transitive constant cocycle and that 7 is an isomorphism.

The second part is clear. [

Example 2.12. Let X = {I,2,3,4} be the tetrahedral crossed set defined in Section
1.3 and let S ={a,b}. Then Sy ={id,o}~C, = {+1}. There is a non-trivial 2-
cocycle f: X x X — S given by

By =1 f x=1lory=1orx=y,
By, = —1 otherwise.

Let i : X —>Innp (X x4 S) be as in the paragraph preceding Definition 2.10. It is
clear that ¥(1)y(2)e Hy, and Yy(1)¥(2)(4 x a) = y(1)(3 x b) =4 x b, whence f is
transitive and X xg S is indecomposable.
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A way to construct cocycles, which resembles the classification of Yetter—Drinfeld
modules over group algebras, is the following one:

Example 2.13. Let X be an indecomposable (finite) rack, xoe X a fixed element,
G =Innp (X), and let H = G, be the subgroup of the inner isomorphisms which fix
xo. Let Z be a (finite) set and p: H— S, a group homomorphism. There is then a
bijection G/H — X given by g+ g(xo). Fix a (set theoretical) section s: X — G; i.e.,
s(x) - xp = x Vxe X. This determines, for each x,ye X, an element ¢, , € H such that
¢s(y) = s(xP>p)t.,. To see this, we compute

s> 2) T hus () - x0 = s(x > )T ey = s(xB>p) 7 (x> ) = xo.

Then it is straightforward to see that f: X x X >Sgz, B, = p(tx,) is a constant
cocycle. Explicitly, this defines an extension X xz Z as

(x,2) > (¢, 2) = (x>, p(s(x B> ) ps() ()

Even if X is a quandle, this is not a quandle in general, since it does not necessarily
satisfy (2.8). Let us compute when (2.8) is satisfied (suppose that X is a quandle)

B = p(s(x>x) 7 5(x)) = p(s(x) " hu8(x)) = p(y1.) = p(y,)-

Then X x4 Z is a quandle iff X is a quandle and p(¢,,) = 1€Sz.

Remark 2.14. It is easy to see that for polyhedral quandles and affine quandles the
group H is generated by ¢, , and then we cannot construct non-trivial quandle
extensions in this way.

2.3. Modules over a rack

Throughout this subsection, ‘R will denote the category of racks. All the
constructions below can be performed in the category Q of quandles, or in the
category Cr&S of crossed sets.

It is clear that finite direct products exist in the category R, cf. Example 1.19. Then
we can consider group objects in ‘R; they are determined by the following
Proposition.

Proposition 2.15. A group object in R is given by a triple (G, s,t), where G is a group,
se Aut(G), t: G—Z(G) is a group homomorphism, and

o st =15,
® s(x)x 't(x)eker(r) VxeG.

The rack structure is given by x>y = t(x)s(y).
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A group object (G,s,t) in R is a quandle iff 1(x) =s(x)"'x VxeG, iff it is an
homogeneous quandle (hence crossed set).
A group object (G, s,t) in R is abelian iff it is an affine rack.

Proof. The second and third statements follow from the first without difficulties
(notice that the image of ¢ lies in the center).

A group object in R is a triple (G, -, I>) with (G,-) a group and (G, I>) a rack,
such that the multiplication - is a morphism of racks. Let s,1: G—G, s(x) =
I>x, t(x) = x> 1. Then both s and ¢ are group homomorphisms since s(xy) =
I>(xy)=({-1)>(x-y)=(1D>x)-(1>y) =s(x)s(y), and analogously for 1.
Furthermore,

¥y = (1) (p-1) = (1) - (xB> 1) = s()(x)

=(xB>1) - (1By) = t(x)s(y).
Then, s must be an isomorphism, and then #(x) is central Vx. Last,

XD (yB>z2) =1(x) - s1(y) - 5°(2),

(x> 3) B> (xB>2) = 2 (x) - 15(y) - s1(x) - ()

whence #(x) - st(y) = £2(x) - ts(y) - st(x). Taking x = 1 we see that st = ts. Taking
y =1 we see that #(¢(x)s(x)x~!) = 1. The converse is not difficult. [J

Let us now consider the “comma category” R|, over a fixed rack X recall that the
objects of ‘R|, are the maps f:Y—X and the arrows between f:Y—>X and
g:Z— X are the commutative triangles, i.e., the maps 4: Y — Z such that gh = f.

Since equalizers exist in ‘R (they are just the set-theoretical equalizers with the
induced >), R has finite limits. It follows that 9R|, also has finite limits. We are
willing to determine all abelian group objects in R| .

Definition 2.16. Let X be a rack and let 4 be an abelian group. A structure of X-
module on A consists of the following data:

® a family (1), .y of automorphisms of 4, and
® a family (7). y of endomorphisms of 4,

such that the following axioms hold:

Nij>k ke = Ni>ji> k Nides (2.10)
Tij>k = Nit> itk Tik + Tijil>k Tijs (2.11)

Nij>k Tk = Tid>j,i>k Njj- (2.12)
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If X is a quandle, a quandle structure of X-module on A is a structure of X-module
which further satisfies

0 + i = id. (2.13)

If X is a crossed set, a crossed set structure of X-module on A is a quandle structure of
X-module which further satisfies

if il>j=j and (id —n;)(t) = 7;(s) for some s, then (id —n;)(s) = ws(1). (2.14)
An X-module is an abelian group A provided with a structure of X-module.

Remark 2.17. Taking j = k in (2.10), one gets in presence of (1.3) the suggestive
equality:

NiMi; = Niv>jiv> Mij- (2.15)

Let 4 be an X-module. We define o;;: 4 x A— A by

o (s, 1) = n; (1) + Ty(s).

Theorem 2.18. (1) oy is a dynamical cocycle, hence we can form the rack Y = X x, A.

(2) The canonical projection p: Y — X is an abelian group in R|y.

(3) If p: Y—>X is an abelian group in R|y and X is indecomposable, then
Y~X x, A for some X-module A and p is the canonical projection.

(4) If X is a quandle and A is a quandle X-module, then the preceding statements are
true in the category of quandles. Same for crossed sets.

Proof.

(1) Condition (2.1) follows since 7;; is an automorphism. The left-hand side of (2.2)
is

Nijos kMiac () + M i Tk (2) + Tk (S)
and the right-hand side of (2.2) is
Nis i kMg (W) + Tins i i (0) + M ik Tide (8) + Tins i kT (5)-

Thus, (2.2) follows from (2.10)—(2.12).

(2) Let 0: X > X X, A, o(i) = (i,0), ieX; it is clearly a morphism of racks. Let
+:Y xxy Y->Y, (i,a)+ (i,b) = (i,a+ b); it is clearly a morphism in R|,. It is
not difficult to verify that (Y,+) is an abelian group in R|, with identity
element o.

(3) Let p: Y—>X be an abelian group in R|,, X an arbitrary rack. We have
morphisms in R|, +:Y xy Y—>Y and o: X — Y satisfying the axioms of
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abelian group. In particular, we have:

(a) The existence of ¢ implies that p is surjective; if ie X, A4; = p~'(i) is an
abelian group with identity o(i).

(b) (a+b)>(c+d)=(alc)+ (bD>d)eAi;, if a,beAd;, c,deA;.

(¢) The map /y: Aj— Aj>;, hy the restriction of ¢, ), is an isomorphism of
abelian groups, for all i,je X.

Assume now that X is indecomposable. Then all the abelian groups A; are
isomorphic, by (3c). Fix an abelian group A provided with group isomorphisms
yi:Ai—>A. Define o;;: A x A—> A, i,jeX, by

oii(s, 1) = yibj(yfl(s) > yj’l (0).

We claim that oy (s, ) = 1;(¢) + 7;(s), where n;(1) = a;(0, 7) and 7;;(s) = a;(s, 0); this
follows without difficulty from (3b), since the y’s are linear. Now, 771-]-(1) = yiD_/h,jy]T‘
is a linear automorphism, whereas t; is linear by (3b). We need finally to verify
conditions (2.10)—(2.12); this is done reversing the arguments in part (1).

(4) Condition (2.3) amounts in the present case to (2.13), whereas condition (2.4)
amounts to (2.14). O

Remark 2.19. Assume now that X is a non-indecomposable quandle and keep the
notation of the proof. Then 4; is a subquandle of Y, indeed an abelian group in Q.
By Proposition 2.15, 4; is affine, with respect to some g; € Aut(4;).

Example 2.20. If (4, g) is an affine crossed set, then it is an X-module over any rack
X withn; =g, 1y =f =1d — g. We shall say that 4 is a frivial X-module if g = id,
that is when it is trivial as crossed set.

Example 2.21. Let X be a trivial quandle, let (4;), ., be a family of affine quandles
and let Y be the disjoint sum of the 4,’s, with the evident projection ¥ — X. Then
Y — X is an abelian group in {Q|, which is not an extension of X by any X-module, if
the A;’s are not isomorphic.

We now show that the category of X-modules, X an indecomposable quandle or
rack, is abelian with enough projectives. Actually, it is equivalent to the category of
modules over a suitable algebra.

Definition 2.22. The rack algebra of a rack (X, I>) is the Z-algebra Z{ X} presented
by generators (nl;frl)id.ex and (t;) with relations nn;' = n;'n; = 1, (2.10),
(2.11) and (2.12).

The quandle algebra of a quandle (X, >) is the Z-algebra Z(X) presented by
generators ('), and (1), y, with relations n;n;' = n;'n; =1, (2.10), (2.11),
(2.12) and (2.13).

ijeX>
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It is evident that the category of X-modules, X a rack, is equivalent to the category
of modules over Z{X}; therefore, it is abelian with enough injective and projective
objects. Same for quandle X-modules and Z(X).

The algebra Z(X) is augmented with augmentation e¢:Z(X)—Z, e(n;) =1,
¢(t7) = 0. The algebra Z{X} is also augmented, composing ¢ with the projection
Z{X}>Z(X).

There are various interesting quotients of the algebra Z(X).

First, the quotient of Z(X) by the ideal generated by the ;s is isomorphic to the
group algebra of the group A(X) presented by generators (1), ;. With relations
(2.10).

Next, consider the following elements of the group algebra ZGy (see Definition
1.5):

ije

ng=1i, t=1- (i>)). (2.16)

It is not difficult to see that this defines a surjective algebra homomorphism
Z(X)— ZGy; in particular any Gy-module has a natural structure of X-module.

Definition 2.23. If X is a crossed set and M is any Gy-module then M also satisfies
the extra condition (2.14). We shall say that M is a restricted X-module.

Definition 2.24. Let X be a rack and let 4 be an X-module. A 2-cocycle on X with

values in A is a collection (ky), ;. y of elements in A such that

Mg (Ki) + Kijo ke = Nivs i (Kik) + Tiv i 1 (155) + Kisjisk Vi j,ke X (2.17)
Two 2-cocycles k and k' are cohomologous iff 3f : X — 4 such that

ey = 15— 1y, (S () + /(B J) — 15(f (D). (2.18)

As remarked earlier, the reader can find in Section 4 a complex which justifies
these names.

Proposition 2.25.

(1) Let X be a rack and consider functions 1n:X x X —>Aut(4), 7:X X
X —>End(4), k: X x X— A. Let us define a map o by

wi(a,b) = n;(b) + t5(a) + x5, a,beA. (2.19)

Then the following conditions are equivalent:
(a) o is a dynamical cocycle.
(b) n,t define a structure of an X-module on A and (i) is a 2-cocycle, i.e., it
satisfies (2.17).
(2) Let k and k' be 2-cocycles and let o, o be their respective dynamical cocycles. If k
and k' are cohomologous then o and o' are cohomologous.
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Proof. Straightforward. For the second part, if f is as in (2.18), then take y: X > S,
by y;(s) =f(i) + s. It is easy to verify (2.6). O

Definition 2.26. If X is a rack, 4 is an X-module and (i), ;. y is a 2-cocycle on X
with values in A4, then the extension X x, A, where o is given by (2.19), is called an
affine module over X. By abuse of notation, this extension will be denoted X x, A.

All the constructions and results in this section are valid more generally over a
fixed commutative ring R.

3. Simple racks
3.1. Faithful indecomposable crossed sets

To classify indecomposable racks, we may first consider faithful indecomposable
crossed sets (recall that a faithful rack is necessarily a crossed set), and next compute
all possible extensions.

Proposition 3.1. Let X be an indecomposable finite rack. Then X is isomorphic to an
extension Y x, S, where Y is a faithful indecomposable crossed set. Furthermore, Y
can be chosen uniquely with the property that any surjection X —» Z of racks, with Z
faithful, factorizes through Y.

Proof. Consider the sequence X — X| := ¢(X)—> X, = ¢(X7)... . Since X is finite
the sequence stabilizes, say at ¥ = X,,, which is clearly faithful and indecomposable.
By Corollary 2.5, X~ Y x, S. Now let  : X - Z be a surjection, with Z faithful. By
Lemma 1.8, it gives a surjection ¥, : X1 —>Z, and so on. [

Faithful indecomposable crossed sets can be characterized as follows.

Proposition 3.2.

(1) If X is a faithful indecomposable crossed set, then there exists a group G and an
injective morphism of crossed sets ¢ : X — G, such that Z(G) is trivial and ¢(X) is
a single orbit generating G as a group. Furthermore, G is unique up to
isomorphisms with these conditions.
(2) If X is a single orbit in a group G with Z(G) trivial and X generates G, then X is a
faithful indecomposable crossed set.
(3) There is an equivalence of categories between
(@) The category of faithful indecomposable crossed sets, with surjective
morphisms.
(b) The category of pairs (G, 0), where G is a group with trivial center and O is an
orbit generating G; a morphism [ : (G, 0)— (K, %) is a group homomorphism
f:G>K such that {(O) = U.
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Proof.

(1) Existence: take G = Innp (X); uniqueness: by Lemma 1.9.
(2) Immediate.
(3) Follows from (1), (2) and Lemma 1.8. O

We shall say that a projection (=surjective homomorphism) n: X' — Y of racks is
trivial if card Y is either 1 or card X.

Definition 3.3. A rack X is simple if it is not trivial and any projection of racks
n:X— Y is trivial.

A decomposable rack has a projection onto the trivial rack with two elements; it
follows that a simple rack is indecomposable.

Let X be a simple rack with n elements; then ¢(X) has only one point, or ¢ is a
bijection. In the first case, X is a permutation rack defined by a cycle of length #; in
the second case X is a crossed set (and necessarily card X > 2).

It is not difficult to see that a permutation rack with n elements defined by a cycle
of length #n is simple if and only if # is prime.

Proposition 3.4. Let X be an indecomposable faithful crossed set, which corresponds to a
pair (G, 0). Then X is simple if and only if any quotient of G different from G is cyclic.

Proof. Assume X is simple. If n: G— K is an epimorphism of groups, then either
n(X) is a single point or 7|y is bijective. If 7(X) is a point, this point generates K,
and then K must be cyclic. If n|  is bijective, take heker(n); then hAxh~! = x Vxe X,
whence 1€ Z(G). This means that 7 is bijective.

Assume now that any non-trivial quotient of G is cyclic. Let 7: X —Y be a
surjective morphism of crossed sets, then G~Innp (X)— Inny (V) is an epimorph-
ism, so that either it is a bijection (then X ~ Y) or Inn (Y) is cyclic. In the last case,
¢(Y), being indecomposable, is a point; hence Y, being also indecomposable, is a
point. [

Example 3.5. Let X be the crossed set of the faces of the cube. We can realize X as
the orbit given by 4-cycles inside S4, since X is faithful and Innpy (X)=~S,.
Considering the quotient Sy —S4/K~S3, where K is the Klein subgroup, we see
that X is not simple. Indeed, this gives X as the same extension Z3 X, Z, as in
Example 2.7. Also, if X’ is the orbit given by the six transpositions in S4, we see
taking the same quotient S4/K that X’ is an extension Z3 X, Z,.

Example 3.6. Since the only proper quotient of S,, (n=5) is cyclic, we see that if X is
a non-trivial orbit of S, then either

® X generates S, and then it is simple, or
e XcA,.



204 N. Andruskiewitsch, M. Graiia | Advances in Mathematics 178 (2003) 177-243

If X< A,, then it might fail to be an orbit in A,. This would happen if and only
if the centralizers of the elements of X lic inside A, (because the order of the
orbits is the ratio between the order of the group and the order of the centralizers).
In this case, thus, X decomposes as a union of two orbits, which are isomorphic
via conjugation by any element in S,\A, (an example of this case arises for
n = 5 and X the 5-cycles). On the other hand, if the centralizers of the elements of X
are not included in A, then X is indecomposable, and hence simple by the
proposition.

3.2. Classification of simple racks

We characterize now simple racks in group-theoretical terms. We first classify
finite groups G such that Z(G) is trivial and G/N is cyclic for any normal non-trivial
subgroup of G. We are grateful to R. Guralnick for help in this question.

To fix notation, if G acts on H, we put H>G the semidirect product with

structure (4, g)(H',g'") = (h(g- 1), 99).

Theorem 3.7 (Guralnick). Let G be a non-trivial finite group such that Z(G) is trivial
and G/H is cyclic for any normal non-trivial subgroup H. Then there are a simple
group L, a positive integer t and a finite cyclic group C = {x) in Aut(N), where
N =L'"=L X --- x L (t times), such that one of the following possibilities hold.

(1) L is abelian, so that N is elementary abelian of order p*, x is not trivial and it acts
irreducibly on N. Furthermore, G~N>C.

(2) L is simple non-abelian, G = NC~(N>aC)/Z(N>C) and x acts by

X (B o) = (0, 1y, o 1) (3.1)

for some e Aut(L).

Conversely, all the groups in (1) or (2) have the desired properties. Furthermore, two
groups in either of the lists are isomorphic if and only if the corresponding groups L are
isomorphic, the corresponding integers t are equal and the corresponding automorph-
isms x define, up to conjugation, the same element Out(N) = Aut(N)/Int(N).

Before proving the Theorem, we observe that:

® If G is a group which is not abelian and such that G/H is abelian for any normal
non-trivial subgroup H, then G has a unique minimal non-trivial normal
subgroup, namely [G, G].

® If G is a finite group such that G/N is cyclic for any normal non-trivial subgroup
N, then “Z(G) is trivial” is equivalent to “G is non-abelian”.

® Case (2) covers the case where G is non-abelian simple (¢t = 1, C is trivial).

® In case (1), identify L with F, and the automorphism x with Te GL(¢, F,). Then x
acts irreducibly if and only if the characteristic polynomial of T is irreducible,
hence equals the minimal polynomial of 7. In this case, if n = ord x and if d
divides n, 1#d#n, then ker(T“ —id) = 0; this implies that N — 0 is a union of



N. Andruskiewitsch, M. Graiia | Advances in Mathematics 178 (2003) 177-243 205

copies of C. Hence |C| divides p’ — 1. Clearly, we may assume that x acts by the
companion matrix of an irreducible polynomial in F,[X] of degree .

® [et N, C be two groups, C acting on N by group automorphisms. The
center Z(N>aC) is given by Z(N><C)={(n,c)|ceZ(C), neN®, ¢c-m=
n~'mn ¥Yme N}. In particular, if p: (N> C)— (N> C)/Z(N>C) is the projec-
tion then p(N)~N/Z(N)C.

Proof. Step 1. We first show that the groups described in the Theorem have the
desired properties.

Let L, N, C, G be asin case (1). By the irreducibility of the action of C, being x
non-trivial, we see that Z(G) is trivial. We claim that any non-trivial normal
subgroup M of G contains N. For, M n N is either trivial or M "N = N.If ae G and
meM, m#e; then [a,mle M N[G,G]=M NN. Thus M NN is non-trivial, since
otherwise me Z(G), proving the claim. Hence any non-trivial quotient of G, being a
quotient of C, is cyclic, and G satisfies the requirements of the theorem.

Let now L, N, C, G be as in case (2). We identify N with its image in G. We
claim next that Z(G) is trivial. Let (n,¢)e N > C be such that p(n,c) = nce Z(G). It
is easy to see that neN* and ¢ acts on N by conjugation by n~!. Thus
(n,c)eZ(N><C) and nc =1 in G.

Any normal subgroup P of N is of the form [, ; L;, for some subset J of
{1, ..., t}; if Pis also x-stable then either P is trivial or equals N, because x permutes
the copies of L. As in case (1), we conclude that any non-trivial normal subgroup M
of G contains N; hence any non-trivial quotient of G is cyclic.

Step 11: Let G be a finite group with a minimal normal non-trivial subgroup N,
and assume that G/N is cyclic. Then there exists a simple subgroup L of N, and a
subgroup C = {x) of G such that N = L x --- x L (¢ copies) and G = NC.

Indeed, let xe G be such that its class generates G/N and let C be the subgroup
generated by x; then G = NC. Let L be a minimal normal non-trivial subgroup of N.
Then L; := x"! Lx~"*! is also a minimal normal subgroup of N and (L;---L;) "L
is either trivial or L;;;. Let t be the smallest positive integer such that
(Ly--L)nLyy =Ly Then Ly---L,~L; x --- x L, is a normal subgroup of N
and is stable by conjugation by x; so it is normal in G and therefore equal to N. If S
is a normal subgroup of L, then S~S x 1 x --- x 1 is normal in N, and by
minimality of L, L is simple.

Step III: We now show that any group G satisfying the requirements of the
theorem is either as in case (1) or (2). We may assume that G is not simple. We keep
the notation of Step II and assume then that Z(G) is trivial and that any proper
quotient of G is cyclic.

If N is abelian then N C<=Z(G) is trivial, whence G = N> C. Furthermore, x
should act irreducibly since any subgroup P<= N which is x-stable is normal. Hence,
G is as in case (1).

If L is not abelian and > 1 we have, for i>1, [xLx~!, L;] = x[L,;, L 1]x" ' =1,
from where x sends L, isomorphically to L;, and x acts as in case (2) of the
statement. Consider the projection p:N><C—G. Since Z(G) 1is trivial,
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Z(N>aC)cker(p). Let now (n,c)eker(p); then ¢ =n~! in G, whence ¢ acts by
conjugation on N by n~!. Thus (n,¢)e Z(N > C), and we are done.

Step IV: We prove the uniqueness statement. N is unique since, as remarked,
N =[G, G]. Now, L is unique by Jordan-Holder, then ¢ is unique. Since x was
chosen modulo N, x and x’ give rise to the same group if they coincide in Out(N).
Furthermore, since any automorphism G — G must leave N invariant, x is unique up
to conjugation in Out(N). O

Remark 3.8. Let N, C be finite groups with C acting on N by group
automorphisms, and let G = N> C. If (m,z), (n,y) € G, then

(m, z)(n,y)(m,z)"" = (m(z - n)(zpz""-m"),zyz7").

When C is abelian, it follows that

€(n,y) = Oz-n) x {y}, (32)

zeC

where € stands for conjugacy class, and ¢, for the orbit under the action of N on
itself given by

m—yn = mn(y-m"). (3.3)

Note that (.. ¢,y Op(z-n) = Oy(n). For, n'—yn=y-n, and the claim follows.
Note also that m—n is not the same as mD> n.

We can now state the classification of simple racks. We begin by the following
important theorem. The proof uses [EGS, Lemma §], which is in turn based on the
classification of simple finite groups.

Theorem 3.9. Let (X, >) be a simple crossed set and let p be a prime number. Then
the following are equivalent.

(1) X has p' elements, for some teN.

(2) Inny (X) is solvable.

(3) Inny (X) is as in case (1) of Theorem 3.7.

(4) X is an affine crossed set (F,, T) where T € GL(t,[,) acts irreducibly.

Proof.

(I = 2) This is [EGS, Lemma 8§].

(2 = 3) This is Proposition 3.4 plus Theorem 3.7.

(3 = 4) This follows from the preceding discussion. Since ¢(X)<Inn (X) is a
conjugacy class, by (3.2) we have ¢(X) = N x {x"} for some r. Since
¢(X) generates Innp (X), r must be coprime to the order of x. Take
y =x"and call TeGL(t,F,) the action of y (which is also irreducible).
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We have
(m, ) B> (n,p) = (m,y)(n,y)(m,»)”" = (Tn+ (id — T)m, y).

(4=1) Clear. O

Corollary 3.10. The classification of simple racks with p' elements, for some prime
number p and te N, is the following:

(1) Affine crossed sets ([F;, T), where T is the companion matrix of an irreducible

monic polynomial in F,[X] different from X — 1 and X.
(2) The permutation rack corresponding to the cycle (1,2, ....p) if t = 1.

Proof. Easy. [

Remark 3.11. Keep the notation of Step III in Theorem 3.7. If L is abelian, then x
does not necessarily send L, to L;, as wrongly stated in [J2, Lemma 4(ii)]. This
explains why in [J2, Lemma 6], only irreducible polynomials of the form X’ — a
appear; while, as we have seen, this restriction is not necessary.

Theorem 3.12. Let (X, I>) be a crossed set whose cardinality is divisible by at least
two different primes. Then the following are equivalent.

(1) X is simple.

(2) There exist a non-abelian simple group L, a positive integer t and xeAut(L'),
where x acts by (3.1) for some e Aut(L), such that X = O.(n) is an orbit of the
action —, of N = L' on itself as in (3.3) (n#m~" if t=1 and x is inner,
x(p) = mpm~"). Furthermore, L and t are unique, and x only depends on its
conjugacy class in Out(L"). If m,pe X then

mb>p = mx(pm™"). (3.4)

Proof.

(I = 2) By Theorem 3.9, Inn (X) is as in case (2) of Theorem 3.7. Therefore, we
have L, t and xeAut(L"). Let G=(N><C)/Z(N><C)~ Inny (X),
and G=N>aC and let p: G- G be the projection. If %(n,y) is a
conjugacy class in G then p(%(n,)) is a conjugacy class in G, and it is
not difficult to see that p:%(n,y)—p(€(n,y)) is an isomorphism of
crossed sets. Then X has the structure of €(n,y) given by (3.3). Now,
nye G must be such that p(%(n,y)) generates G. Since the subgroup
generated by p(%(n,y)) is invariant, we know by the proof of Theorem
3.7 that it is either trivial or it contains N. It is trivial if
(n,y)eZ(N>C), ie., if t =1 and y acts on N by conjugation by n~';
thus we must exclude this case. This case excluded, y must generate C,
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and then we can take x = y in the proof of Theorem 3.7, whence X is as
in (3.4).
(2=1) Similar. O

We restate the previous results as: if X is a simple rack then either

(1) |X|=p a prime, X ~F, a permutation rack, x>y =y + L.

2 [X|=p', X~(F,,T) is affine, as in Corollary 3.10(1).

(3) |X|is divisible by at least two different primes, and X is twisted homogeneous, as
in Theorem 3.12.

Compare this with [J2, Theorem 7].

The simple crossed sets in (2) can be alternatively described as (X, [>“) where
X~F,, q=p'; aelF, generates F, over F, and x >“y = (1 —a)x + ay. It follows
easily that Aut(X, I>“) is the semidirect product F,>Fy.

It is natural to ask how many different simple crossed sets with ¢ = p’
elements there are. This is a well-known elementary result. For, if I(n)
denotes the number of monic irreducible polynomials in F,[X] with degree n, then
2an d1(d) = p". Thus

where p is the M6bius function.

4. Cohomology
4.1. Abelian cohomology

Let (X, >) be a rack. We define now a cohomology theory which contains all
cohomology theories of racks known so far. We think that this cohomology can be
computed by some cohomology theory in the category of modules over X.

For a sequence of elements (x1, X7, ...x,) € X" we will denote

[x1xn] = x1 B> (0 B> (o (1 B xy) -+0).
Notice that if i<n then
[xl ...xi] D [xl ...xi.o.xn] = ['xl ...xn]'

Definition 4.1. Let * € X be a fixed element (which is important only in degrees 0 and

1). Let Z{X} be the rack algebra of X (see Definition 2.22) and let, for
n=0, C,(X)=27Z{X}X" ie., the free left Z{X}-module with basis X" (X° = {x}
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is a singleton). Let 9 = 9, : C,41(X) » C,(X) be the Z{ X }-linear map defined on the

basis by
For n>1:
(9()61, ...,X,Hl)
= Z (_l)in[xl4--x,-],[x|'“«‘?i"'xwl](xl’ s Xiy eoey Xnt1)
i=1
n X
- Z (=)' (xry oo X, X D> X, oo, X B X))
i=1
1
— (=" Ty oo 1 n10me ] (X5 w1y X))
For n=0:

8(x):7‘[’-*,*’1|>x*' (41)

Lemma 4.2. (C,(X),0) is a complex.
Proof. We decompose 8, = Y (—1)'9, where
ali(x17 -~->xn+1) :’/’[xl--~xi],[x1--~)€,v--~x,,+1](x1a --~7xAia -~->xn+1)
- (x1,...,X,;l,X,‘DX,‘Jr],...,X,‘DXnJr]) for i<n

n+1 _ .
8,1 (X], ...,X,H_]) = _‘E[xl"'xrz]A[Xl"'Xn—l«’CnJrl](xl7 ...,x,,) fori=n+1>1,

aol(x) =1, ,1xx* forn=0.
Then, it is straightforward to verify that

& 0=\ for 1<i<j<n+1,

and thus
OiOu= > (=D)TdI+ Y ()T
I1<i<j<n+l 1<j<i<n
= Y (=HHold+ > (-n)P9d=0. O
I1<i<j<n+l 1<j<i<n

We are now in position to define rack (co)homology.

Definition 4.3. Let X be a rack. Let 4 = (4,n,7) be a left X-module and take
C"(X,A) = Homyy,(Cy(X), A), and the differential d = 0*. By the lemma, this is a
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cochain complex. We define then
H"'(X,A) = H'(C*(X,A)).
If A is a right X-module (i.e., a right Z{X}-module), we define

Ci(X,4) = A® 7131 Ci(X) and  H, (X, A) = H,(C(X, A)).

Remark 4.4. Low degree cohomology can be interpreted in terms of extensions: a
2-cocycle is the same as a function x: X x X — A which satisfies (2.17); and two
2-cocycles are cohomologous if and only if they satisfy (2.18).

Remark 4.5. Let X be a quandle; replacing the rack algebra Z{X} by the quandle
algebra Z(X) in Definition 4.1 one can define quandle cohomology theory that has
as a particular case the quandle cohomology Hé(X ,A) in [CJKLS].

We consider now particular cases of this definition.
4.2. Cohomology with coefficients in an abelian group

Recall that Z{ X} has an augmentation Z{X} —Z given by 1, ;> 1, 7;;+0. Then,
any abelian group A becomes an X-module. The complexes C.(X,A4), C*(X,A)

coincide thus with previous complexes found in the literature (see for instance
[CJKLS,FR,G1]). We recall them for later use:

Co(X,A) = A®,ZX", C"(X,A) =Homz(ZX", A)~Fun(X", A)

n

ANa® (X1, ..., Xnt1)) = Z (=1 (@® (X1, ..oy Kiy ve s Xps1)

i=1

— a® (x1, ooy Xic1, X P Xig1, o, X D X 1)

n

df (x1, e Xn) = Y (=D (S oty oy Ky oy Xn1)

i=1

— f(x1y ey X, X DXy e, X D X)) (4.2)

Here, 0y: Ci(X,A)— Cy(X,A) vanishes. Notice that H'(X,A4) = 4™X)  where
mo(X) is the set of Innp (X)-orbits in X.

Example 4.6. Let (X, [>) be a crossed set, let 4 be an abelian group (denoted
additively), and let f be a 2-cocycle with values in 4. Let B: X x X >S4 be given by

Bj(a) =a+f;, i,jeX, acA.
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Then B is a constant rack cocycle (i.e., it satisfies (2.7)). It is a constant quandle
cocycle (i.e., it satisfies (2.8)) iff f;; = 0 Vie X. The definition of ““quandle cocycle” is
thus seen to be the same for these kind of extensions as that in [CJKLS]. The cocycle
Bj; satisfies (2.9) iff f; = 0 whenever il>j = j and f; = 0.

Lemma 4.7. H?>(X,G)~Hom(H,(X,Z),G) for any abelian group G.

Proof. This follows from the “Universal Coefficient Theorem” since H, (X, Z) is free
(cf. [CJKS, Proposition 3.4]). O

Remark 4.8. Some second and third cohomology groups are computed in [LN];
some others in [Mo]. See [O] for tables of the computations done so far. In
particular, we excerpt from [Mo] that H*(X,Z) = Z if X = (Z/p, >?) where p is a
prime and 1#qe(Z/p)”.

Lemma 4.9. Let X be the disjoint sum of the indecomposable crossed sets Y and Z.
Then H*(X,7)~H*(Y,Z)® H*(Z,7)® 7*.

Proof. Let feZ*(X,7), ie., Jik +fijok = fisji>k + fix Vi,j,keX. Then one has
Sijok =fix =fisix forall i, te Y, j ke Z, since the actions of Z on Y and viceversa
are trivial. Therefore, fix =f;; for all i,teY, j keZ, being both Y and Z
indecomposable. We conclude that Z*(X,7Z)~Z*(Y,Z)®Z*(Z,7)®7*. Now, if
g: X —>Z then dg is really only a function on (¥ x Y)u(Z x Z), and the claim
follows. O

4.3. Restricted modules
Consider a restricted X-module A4, see Definition 2.23. This is the same as a

Gy-module, Gy the enveloping group of X. We get then the complex
(C*(X,A),d)~(Fun(X*,4),d), with

df(xh ~--7xn+l) = Z (_l)i[xl "'xilf(xh ~~-axAi7 ~--7xn+1)
i=1

N

- (71)7‘(x15”'7xifl;xi[>xi+la"-5xi[>xn+l)
=1

— (—1)"+1(1 — [x1 - X ) (15 e X))

As a particular case, suppose that X is any quandle and (4, g) is an affine crossed set.
Take A = Z[T, T~"] the ring of Laurent polynomials. Then 4 becomes a A-module,
and a fortiori a Gy module by x - a = Ta = g(a) Vxe X, ae A (since for any quandle
there is a unique algebra map ZGy - A, x> T). Then n,; acts by g and t;; acts by
f=1—-gon A. We get in this way the complex considered in [CES].
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Lemma 4.10. If X is a rack and A is an abelian group with trivial action then
H*(X,A4) = H'(Gy,Fun(X, 4)).

Here the space Fun(X, A) of all functions from X to A is a trivial left Gy-module; the
right action is given by (f - x)(z) = f(xP>z).

Proof (Sketch, see [EG]). Consider the map @:X->Gy, x—x. Let
f:Gy—>Fun(X,A4) and take r(f): X x X > A4, where r(f)(x,y) =f(®(x))(p). It is
easy to see that this map gives a morphism H'(Gy, Fun(X, 4))— H?*(X, ). On the
other hand, let ge Z>(X, A). This gives a map ¢’ : X —» Fun(X, 4), ¢ (x)(») = g(x, ).
Recall that for a right Gy-module M, a map ©n: Gy > M is a l-cocycle iff the map
7. Gy = Gy<M given by z+— (z,7(z)) is a homomorphism of groups. Denote M =
Fun(X, 4). We have amap ¢, : X — Gy ><M given by {,(x) = (x,¢'(x)). So we need
to show that ¢, extends to a homomorphism Gy — Gy><M. But the group Gy is
generated by X with relations xy = (x> y)x. Thus, we only need to check that the
¢y(x)’s satisfy the same relations, and it is straightforward to see that this is
equivalent to dg = 0. Now, it is easy to see that this map is the inverse of r. [

4.4. Non-principal cohomology

Let X = I_IielX,- be a decomposition of the rack X. It is possible then to
decompose the complex C,(X,Z) of (4.2) into a direct sum

G(X)=@® Ci(X), C(X)=2Z(X""'xX)~ZX""'®ZX.
iel

For each iel, let A; be an abelian group. We denote by A; this collection. Then we
take C*(X, A;) the complex

C*(X,A4;) = ® Homz(CL(X), 4;)

iel
Notice that if 4 = A4; Viel, then this complex is the same as C*(X, 4) in (4.2).
4.5. Non-abelian cohomology
Let (X, >) be a rack and let I" be a group. We define:

H'(X,I)=Z"(X.I)={y: X>T|y5; =7, VijeX}, (4.3)

Z2(X,T) ={B:X x X>T | BijoiBis = Bisji s Pix Virj ke X}. (4.4)

The elements of Z?*(X,I') shall be called non-abelian 2-cocycles with co-
efficients in I'. If §,f: X x X >I" we set f~f if and only if there exists y: X — I’
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such that

Bij = (ViDj)ilﬁg‘j"/j' (4.5)

It is easy to see that ~ is an equivalence relation, and that Z?(X,I") is stable under
~. We define

H*(X,T)=Z*(X,T)/~. (4.6)

Example 4.11. Let S be a non-empty set; then H*(X,Sg) parameterizes isomorph-
ism classes of constant extensions of X by S, as in Section 2.2.

Remark 4.12. Though obvious, we point out that H*(X,Sgs) = H*(X,Z;) when S
has only two elements.

4.6. Non-abelian non-principal cohomology

We combine the theory of non-principal cohomology in Section 4.4 with that of

non-abelian cohomology: let X = |_| ie1X; be a decomposition of the rack X and for
each iel let I'; be a group. Let us denote I'; this collection. We consider

72, ={r =g x < x>
Sile,y B 2)fi(r.2) = fi(x P>y 5P 2)fi(x,2) V. ye X, ze X}

As usual, ifferz(X, I'r), we say that f ~fiff 3g = |_|,-g,- : X;— I'; such that
fix,y) = gi(xB>y) " fi(x,»)g:(y) VxeX, yeX..
The importance of such a theory becomes apparent in Theorem 4.14.
Definition 4.13. For iel, let be given a positive integer n; and a subgroup
I'i'eGL(C,n;). Let f = |_|Lf,- X x X;—>1T;. Take V = @ X; x C" a vector space and
iel
consider the linear isomorphism
SVRV-VRV, d((x,a)®(1,b) = (x> y.fi(x,»)(b) ® (x,a),
xeXj, yeX;, aeC" beC".

Theorem 4.14. (1) Let X, I';, V., be as in the definition. Then ¢ satisfies the Braid
Equation if and only if f e Z*(X,T).
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(2) Furthermore, if feZ*(X,Iy), then there exists a group G such that V is a
Yetter—Drinfeld module over G. In particular, the braiding of V as an object in g@@
coincides with ¢ . If T'; is finite Viel and X is finite, then G can be chosen to be finite.

(3) Conversely, if G is a finite group and V € 3% 9, then there exist X = |_|/\’i,ﬁnite
groups Ty, fe€Z*(X,Iy) such that V is given as in the definition and the braiding
ce Aut(V @V) in the category $¥ % coincides with ¢ . Here, X can be chosen to be a
crossed set.

&) If f~f and (V,J), (V, cf) are the spaces associated to f.f, then they are
isomorphic as braided vector spaces, i.e., there exists a linear isomorphism y:V—V
such that (y@y)cf: cf(y®y) VRQVSVRV.

Proof.

(1) Straightforward.

(2) It follows from [G2, 2.14]. The finiteness of G follows from the fact that the
group G=GL(V) can be chosen to be the group generated by the maps
(»,b)— (x> y,f(x,y)b), which is contained in the product [[,;., Gi, where G; =
SXf X F,‘.

(3) It follows from the structure of the modules in $% <. Indeed, if V = @ ;M (g;, p;)
(see [GI1] for the notation), g;eG, G;={xg; =g;x} the centralizer of g¢;,
{i, ..., i} a set of representatives of left coclasses G/G;, and 7 € G, defined by

h;g,(h;)flh;‘ = hyty; then take X = |_|,»Xi, Xi = {hy, ... n.}, and f(h;, ) =
pu(liy)-
(4) 1t is straightforward to verify that if f;(x,y) :g,‘(ny)flﬁ(xJ)gi(y)

VxeX, yeX;, then the map (x,a)+— (x,g;(x)(a)) (xeX;) is an isomorphism of
braided vector spaces. [

Notice that any Yetter—Drinfeld module over a group algebra can be constructed
by means of a crossed set, and one does not need the more general setting of
quandles, nor racks for it. However, racks may give easier presentations than crossed
sets for some braided vector spaces.

5. Braided vector spaces

We have seen that it is possible to build a braided vector space (CX,¢?) from a
rack (X, D>) and a 2-cocycle q, cf. Theorem 4.14 and [G1]. It turns out that the
braided vector space does not determine the rack. We now present a systematic way
of constructing examples of different racks, with suitable cocycles, giving rise to
equivalent braided vector spaces. We consider affine modules over a rack X, that is
extensions of the form X x, A, where A4 is an abelian X-module; see Definition 2.26.
If the cocycle qis chosen in a convenient way, we can change the basis “‘a la Fourier”
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and obtain a braided vector space arising from a set-theoretical solution of the
QYBE. This solution is in turn related to the braided vector space arising from the
derived rack of the set-theoretical solution of the QYBE.

Section 5.1 is an exposition of the relevant facts about set-theoretical solutions
needed in this paper. In Section 5.2 we discuss braided vector spaces arising from set-
theoretical solutions. In Section 5.3 we present the general method and discuss
several examples.

5.1. Set-theoretical solutions of the QYBE

There is a close relation between racks and set-theoretical solutions of the Yang—
Baxter equation, or, equivalently, of the braid equation. It was already observed by
Brieskorn [B] that racks provide solutions of the braid equation. On the other hand,
certain set-theoretical solutions of the braid equation produce racks. This is proved
in [LYZ1,S0], which belong to a series of papers (see [EGS,ESS,LYZ2,L.YZ3])
devoted to set-theoretical solutions of the braid equation and originated in a
question by Drinfeld [Dr]. We give here the definitions necessary to us.

Let X be a non-empty set and let S: X x X — X x X be a bijection. We say that S
is a set-theoretical solution of the braid equation if (S xid)(id x S)(S x id) =
(id x S)(S x id)(id x S). We shall briefly say that S is ““a solution” or that (X, S)isa
braided set. A trivial example of a solution is the transposition 7: X x X > X x X
(x,y)— (y,x). It is well-known that S is a solution if and only if R=15:X X
X — X x X is a solution of the set-theoretical quantum Yang—Baxter equation. If
(X, S) is a braided set, there is an action of the braid group B, on X, the standard
generators o; acting by S;;.;, which means, as usual, that S acts on the 7,i+1
entries.

In particular, a finite braided set gives rise to a finite quotient of B, for any n,
namely the image of the group homomorphism p” : B, > Sy» induced by the action.

Lemma 5.1. [B]. Let X be a set and let > : X x X - X be a function. Let
X xX-oXxX, ci,j)=(iP>},i). (5.1)

Then ¢ is a solution if and only if (X, >) is a rack.

Proof. It is easy to check that ¢ is a bijection if and only if (1.1) holds, and that it
satisfies the braid equation if and only if (1.2) holds. O

Definition 5.2. Let X, X be two non-empty sets and let S: X x X > X x X, §: X x
X— X x X be two bijections. We say that (X, S) and (X, S) are equivalent if there
exists a family of bijections 7" : X — X" such that T"S;i41 = §,-,,-+1T”, for all n=2,
I<isn—1.
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If (X,S) and (X,S) are equivalent and (X,S) is a solution, then (X,S) is
also a solution and the 7™’s intertwine the corresponding actions of the braid
group B,.

Definition 5.3 ([ESS,LYZI1]). Let (X,.S) be a solution and let f,g: X - Fun(X, X)
be given by

S(i.j) = (9i(/). /(D)) (5.2)
The solution (or the braided set) is non-degenerate if the images of f and ¢ lie

inside Sy.

Proposition 5.4 ([So,LYZI1]). Let S be a non-degenerate solution with the notation in
(5.2) and define > by

i>j =197 (J))- (5:3)

(1) One has
[ preserves > ie. fi(jP> k) = fi(j) > fi(k); (5.4)
T =T idoiy,  VijeX. (5.5)

(2) If c is given by (5.1), then c is a solution; we call it the derived solution of S.
The solutions S and ¢ are equivalent, and (X, >) is a rack.
(3) Let (X,D>) be a rack and let [ : X —>Sy. We define g: X > Sy by

9i(J) = 15 (D) > ). (5.6)

Let S: X x X > X x X be given by (5.2). Then S is a solution if and only if (5.4), (5.5)
hold. If this happens, the solutions S and c¢ are equivalent, and S is non-degenerate.

Proof.

(1) It is not difficult.

(2) It is enough to show that S and ¢ are equivalent; automatically, ¢ is a
solution and a fortiori (X,>>) is a rack. Let T":X"—>X" be defined
inductively by

Tz(iaj) = (ﬁ(l)vf)a T = Qﬂ(Tn X ld)v

where Q,(i1, ..., 0n+1) = (fi,., (1), -+ s Sy (in), ny1). One verifies using (5.4) and
(5.5) that 7"S; ;41 = ¢; 41 T, as needed.
(3) Straightforward. [

Note that (5.6) is equivalent to

g_,yl(h)(]') = fi {(hD>)). (5.7)
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Remark 5.5. Let (X,.S) be a non-degenerate solution and let > be defined by (5.3).
Then (X, >) is a quandle if and only if

f7H D) = (gp0)(0), VieX; (5.8)
if this holds, it is a crossed set if and only if

D =(g0(D) = 710 = (g)() VijeX. (5.9)

Let (X,S), (X,S) be two non-degenerate braided sets, with corresponding
maps f, g, resp. f, §. A function ¢:X — X is a morphism of braided sets if and
only if

Joiy(J) = 09i(J), (5.10)

ﬂ(:)@(])zﬁl’ﬁ(ﬁa Vi,jeX. (511)

It can be shown that ¢ is a morphism of braided sets if and only ¢ is a morphism of
the associated racks and (5.11) holds. One may say that a non-degenerate braided set
is simple if it admits no non-trivial projections. It follows that any solution associated
to a simple crossed set is simple, but the converse is not true as the following example
shows: take a set X with p clements, p a prime, and a cycle u of length p. Then
S(i,j) = (u(j), u"'(i)) is simple but the associated rack is trivial.

Definition 5.6 ([ESS,SO]). Let (X,S) be a solution and let S%(i,j) = (Gi(j), F;(i)).
The group Gy, resp. Ay, is the quotient of the free group generated by X by the
relations i = g;(/)f; (i), resp. f;(i)j = F;(i)f;(i), for all i,je X.

If (X,>) is a rack and c is the corresponding solution, then Gy is the group
already defined in Definition 1.5, and coincides with Ay.

5.2. Braided vector spaces of set-theoretical type

We now describe how set-theoretical solutions of the QYBE plus a 2-cocycle give
rise to braided vector spaces. We begin by the case of solutions arising from a rack.
Let (X, >>) be a rack and let ge Z*(X,C*); so that

gij> ik = qi-ji>kqik  Vij,keX. (5.12)

Then, by Theorem 4.14, the space V' = CX has a structure of a Yetter—Drinfeld
module over a group whose braiding is given by ¢?: CX® CX ->CX ®CX,

Let X = {xy,...,x,} be aset, let S: X x X—>X x X be a bijection and let F: X x
X —>C* be a function. Let CX denote the vector space with basis X and define
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SF:CX®CX->CX®CX by

SN(i®)) = Fi;S(i,)) = Fijgi ®fji, i.jeX, (5.13)
where we use the notation in (5.2).

Lemma 5.7. (1) S¥ is a solution of the braid equation if and only if (X, S) a solution
and

F'z'jf};i,kngj,g/f;k = F‘]',kF'i,gkojﬂJf/cifkjv i?jv keX. (514)

(2) Assume that (5.14) holds. Then ST is rigid if and only if S is non-degenerate.

Proof.

(1) Straightforward.
(2) Rigidity is equivalent to ¢’ : V*® V - V ® V* being an isomorphism, where

Cb = (CVV®idV® V*)(ldV* ®C®idV*)(idV*®V®eV}k/).
Assume for simplicity that F = 1. Let (6;),. , be the basis of V'* dual to X. Then
¢’ (3:®J) = Yoy =i fn(J) ®h. Hence, if ¢’ is an isomorphism then g; is bijective
for all j, for ¢”(8;®;/) = 0 if i is not in the image of g;. Now, if f;,(j) = f;(k) then
Cb(ég/.(h) ®j) = Cb(ég/(k) ®)), which implies j = k.

Conversely, if S is non-degenerate then c”

(@) r®8,) =8, w®f (). O

is an isomorphism with inverse

Definition 5.8. Let (X, S) be a non-degenerate solution and let F: X x X ->C* be a
function such that (5.14) holds. We say that the braided vector space (CX,ST) is of
set-theoretical type.

By results of Lyubashenko and others, a braided vector space (CX,cl) of set-
theoretical type can be realized as a Yetter—Drinfeld module over some Hopf algebra
H. See for example [Tk].

Example 5.9. Let I' be a finite group. Let xel’, let (¢ be the conjugacy class
containing x and let p: I', > AutW be a finite dimensional representation of I, the
centralizer of x. We choose a numeration {p; = x,pa, ...,p,} of ¢ and fix elements
g1,92, ---,gr in T such that g;xg; ' = p;. Then

M(x,p) =Indf W~COQW=~ @ ¢QW

1<i<r
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is a Yetter—Drinfeld module over CI" with the coaction d(g; ®w) = p; ® g; ® w, and
the induced action; that is /- (9;®w) = g;®1 - w, where j and tel'\ are uniquely
determined by hp;h~! = Pj» hgi = g;t. In particular, given i, ke {1, ..., r}, let us denote
by jue{l,...,r}, tix ey the elements uniquely determined by

PkPiDE = Dis Prgi = itk (5.15)

We can then express the braiding in a compact way; write for simplicity g;w = g; ® w.
If u,we W and i,ke{l, ...,r} then

c(gew @ giut) = gj, tic - UR GicW. (5.16)

We know from Theorem 4.14 that this braided vector space can be presented with
the crossed set {pi, ...,p,} and a non-abelian 2-cocycle with values in GL(W). We
now show that under a suitable assumption we can present it with a (larger) rack and
an abelian 2-cocycle with values in C*: assume that there exists a basis wy, wa, ..., w,
of W such that

h-wg = 1,(h)We,(5)- (5.17)
for some group homomorphism o: 'y —S, and some map y:{1,...,r} x [, >C*
satisfying

1s(th) = X‘Y(h)xmx)(t), 1<s<r, t,hel,.
Then

C(Pkwq ®piws) = Xs(lik)pj,kwapk (s) ®Pqu~ (518)

That is, the braided vector space (M (x,p),c) is of rack type.

We now introduce a relation between braided vector spaces weaker than
isomorphism but useful enough to deal with Nichols algebras; for example braided
vector spaces related by a twisting are t-equivalent as below.

Definition 5.10. We say that two braided vector spaces (V,c¢) and (W,d) are t-
equivalent if there is a collection of linear isomorphisms U":V®" - W ®»
intertwining the corresponding representations of the braid group B, for all n>2.
The collection (U"),, is called a t-equivalence.

Example 5.11. Let (CX,S”) be a braided vector space of set-theoretical type (see
(5.13)). Let (X, c) be the derived solution; define ¢; = Frog - It
J

Qiiij = 95 Vi,j,keX. (5.19)

then the collection of maps 7" : X" — X" defined in the proof of Proposition 5.4
induce a t-equivalence between (CX, S7) and (CX, ¢?). Indeed, computing only the
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coefficients, we have

COCff(T Shl+l(ll ® - ®ln)) = l/x Ii41

COfo(CZJHl T”(il ® - ®iy)) = Dfintir - Sinorininfin 1 Fipeninen

and the equality holds by (5.19).

5.3. Fourier transform

We consider a rack (X, >), a finite abelian X-module 4, a dynamical cocycle

o: X x X—>Fun(4 x 4,4), and a 2-cocycle q on the rack X x, 4. Let A be the
group of characters of 4. We define a family of elements

(i, ) : Z Y(a)(i,a)eC(X x, A), icX, yed. (5.20)

acA

We want to know under which conditions there exists a family of scalars E'I/’¢ such
that

) ®().9) = Fy (/. 9)@ (), ijeX, y,ped,  (521)
for some 9, v € A. Our main result in this direction, and one of the main results in this
paper, is Theorem 5.13 below.

In what follows, we shall assume that the extension X x, 4 is an affine module
over X, cf. Definition 2.26. That is, « is given by

%ij(a,b) = n;;(b) + 1ij(a) + K5, (5.22)

where 1; ;€ Aut(4), 7;;€ End(A4) define the X-module structure on 4, and x;€ 4. We
denote Y, = X x, A. We shall also write q?f = G(ia),(j5)- We begin by the following
result.

Lemma 5.12. Let q be given by
a,b
a0y = 10w (@)gis, (5.23)
where X,-J,MUGA, qij€C*. Then q is a 2-cocycle if and only if

Lijos k(Kid )i ki = i jims k(Kik ) firs i 1 (Ki ) Gi> jiv> k ik (5.24)

Xi,jDk("/jvk(a))Xj,k(a) = Xi>j,i> k('li,k(a))}(i.k(a)a (5.25)
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.“iJDk(a) = Xil>j,i>k(Ti,k(a»,uibj,ibk(‘cl}i(a)):ui,k (a), (5.26)
Hir>ji> k('iz:j(‘l)) = Xi.jDk(Tj,k (a))ﬂj,k(a)- (5.27)
forallijkeX, acA.
Proof. Writing explicitly down the cocycle condition on ¢, one gets an equality of

functions from 4 x 4 x A to C. Specialization at (0,0,0) implies (5.24); then,

specialization at (a,0,0), (0,4,0), (0,0, a) implies the other conditions. The converse
is similar. [

Theorem 5.13. If the 2-cocycle q is given by (5.23) with Xiw“i.je‘i’ g €C*, then
(1Y) ® (), 9) = Ff (i), ) @ (i.v), (528)

foralli,je X, y,pe A, where

FUY = gy (Ry) iy (Ry) (5.29)
9= (o) oni; (5.30)
V= lp//tiJ((quiJ) ° fiii)il- (5.31)

Here %;j(a) = n;; (tij(a)), Ry = n;}' (icy).
Proof. We compute

Y@, b))

=" W(@p(®d)aly (> j,n;(b) + wij(a) + k) ® (ia)

abeA

o N (o) =Tigla) =Ry . . .
= Z Y(a 11” — Tij(a) —Kij)qz;7J T (11>, ) ® (i, a)

aceAd

= Z ‘lijfls(’zzj)ilXi,j(’zij)il w(a)d)(fi.j(a))71ﬂij(a)Xi,j(fiJ(a))71

a,ceA

x (' ()i () (i, €) ® (i, @)

where in the first equality we use (5.22); in the second, we perform the change of
variables ¢ = 1;;(b) + ;;(a) + x; which gives

b= ’7;,-1 (¢ —1ij(a) —xy) = ’7;}1 (c) — Tij(a) — Ry
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in the third equality we use (5.23) and that ¢ and y; are multiplicative. The claim
follows. 0O

Remark 5.14. The derived rack of the braided set underlying (5.28) is given by

(L) B> () = (iB], [(¢71]) ° W;l][(‘pliwﬂ ° fiDj,i]ilﬂiDj,i)'

Note that it does not depend on (x;) but only on the cocycle q.

Example 5.15. Assume that X is trivial.

(M

(@)

A3)

q given by (5.23) is a cocycle if and only if:

Zig (55060) = 20 (i ) by 1 (<3) (5.32)

Zik k() 254(8) = 2.5 (i () 211 (), (5.33)
1= 25a (ik ()b e (i (5)), (5.34)

1 (01(9)) = 2ige (T (8)) 144 (5), (5.35)

for any i,j,ke X, se A.
Let 0 : X — A4 be any function; define x; = ¢; — g, and

OC,'J(CI, b) =b + K,’j, (536)

that is n; = id, t; = 0 in (5.22). Then o is a non-trivial cocycle, provided that o is
not constant; we shall assume this in the rest of the example and in Lemma 5.16
below.

Furthermore, let ¢;€C* and let w: X — A be any function; define Lij = @) =:
,u;jl, and define q by (5.23). We claim that q is a cocycle. Conditions (5.33), (5.34)
and (5.35) follow because n; = id and t; = 0; condition (5.32) follows from the
special definition of ;.

Then we can apply Theorem 5.13. We have

(W) ® (), 9)) = 45(¢0))(0) (9 (@)™ (j, poo) ® (1,9 "), (5.37)

for all i,jeX, W, ¢eA. In other words, we consider the solution (X x 4,5)
where

S ), (. 9) = (. doy), (i, 1)), (5.38)

the cocycle F;f’d’:qg,-(qﬁa)j)(a_,»)(qﬁwj)(ai)_l, and the corresponding braided

vector space (C(X x A), ST). The associated rack is

(i, ) > (j. ¢) = (J, pajo; ).
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(4) Assume now that o; = U)EI‘L for all i. Hence the associated rack is trivial. Let
0% = 4yd(o))(a1) !

and let (C(X x A),c?) be the associated braided vector space. Let T": (X x
A)"— (X x A)" be as in the proof of Proposition 5.4. In our case, we have

Tn((ilvlpl)v LR (ija!//j)a ”w(inawn)) = ((ilaW1w17’1)a (RS} (ija!//ja)jin)ﬂ LR} (i,1,l//n))~

Lemma 5.16. The braided vector spaces (C(X x A),SF) and (C(X x A),c2) are t-
equivalent.

Proof. Let p, be defined inductively by p; =1, pp1 = pp +n — h, and let

Lig iy = H o’ (a;,).

I<h<n

We shall show that the map U":C(X x A)®">C(X x A)®", U"((i1,¢)) ® - ®
(s V) = 2, T"((01,01) ® -+ ® (i, ), satisfies U"SE, | = 2 | U"; that is, U
intertwines the corresponding representations of the braid group.

On one hand,

UST 1 ((0,91) @ -+ @ (i 1)
= i W10)(03,) (131 0) (0;)
X U((i1,10" ™) @+ @ (i741, Y41 0) ® (i, ;0™ ) ® -+ @ (i, Y1)
= i W10) (03, (011 0) (@)™ i

< (i, 90" @ -+ @ (G111, Y1 T T @ (i, ;0 ) @ -+ @ (i )5

whereas, on the other hand,
& U ((01,91) @+ @ (inU))
=iy, in €1 (1,910 @ - @ (i, ¥y ™) @ (41, Y T ) @ -+ @ (i, )

, 1— - -1
:/Lilv-~--ifzqi/ij+llpj+lwl+ n(al)+1)l#/+laﬂ+ n(ai/)

X (i1, 10" @+ @ (i1, Y1 ") @ (i, Y0 ") @ -+ ® (ins )
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The equality holds since

(0., )o(ay)” (o5, )0 (0) = 0 (0;)0 (0. )/ " (0, )0 (ay),

b

by definition of the p;’s. [

Example 5.17. Assume that n; = id for all i,je X.

()

(@)

(©)

A family (7;) defines a quandle structure of X-module on 4 if and only if 7;; = 0,
Tjk = Tid>ji>k and
Tij>k = Tik + TijTik, (5.39)
for all i,j, ke X. Given such a family, (x;) is a 2-cocycle if and only if
Kik + Kijk = Kig + Tk (i) + Kis ik, (5.40)
We shall consider the following family of examples: X = (Z/3, I>?) is the
unique simple crossed set with three elements; 4 is a finite abelian group of

exponent 2; t; = id — dj, i,j€ X. It is not difficult to verify that (7;) satisfies the
conditions in (1). We fix ae A4, and set

Kkj = (1=0y)a, Ry=0dija,

i,je X. Both families (x;;) and (&;) satisfy (5.40); we denote the corresponding
extensions by ¥ = X x, 4, Y= X x; A. We shall assume that a#0. Indeed,
Y = X X, A4 (for a#0) is isomorphic to ¥ = X X A (case a = 0); just consider
the function f': X — A4, f(i) = a for all i, and check that x is cohomologous to 0,
cf. (2.18).

Analogously, we denote ¥ = X x( A.
IfA=27/2,a=1, Y is isomorphic to the crossed set of transpositions in Sy, via
the identification

(12) = (0,0), (34)=(0,1), (13) = (1,0),
24)=(1,1), (14)=(2,0), (23)=(2,1).

Furthermore, Y is isomorphic to the crossed set of 4-cycles in S, (that is, the
faces of the cube), via the identification

(1234) = (0,0), (1324) = (1,0), (1243) = (2,0),

(1432) = (0,1), (1423) = (1,1), (1342) =(2,1).

The crossed sets ¥ and Y are not isomorphic.
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(4) We consider now the cocycle ng = ¢;€C”; that is Lij = Wij = ¢, for all i,j, in
(5.23). By Theorem 5.13, we have in the braided vector spaces (CY,¢?) and
(CY, &) the equalities

()@ (. 9)) = gyd((1 — 3,)a) i/, ) ® (i, '),

EY)R (), ¢)) = a5 ((dij41)a) (i, P)® (i, Yp' %),

foralli,je X, , ¢ € A. That is, we have isomorphisms with braided vector spaces
(C(X x A), ST), respectively (C(X x A),SF). In both cases, the associated rack
is given by (i,y)> (j,¢) = (i>>j,¢y'™%); this is the crossed set Y. Let
o' = g

i = 4

Lemma 5.18. (1) The braided vector spaces (CY, %) and (CY,c2) are t-equivalent.
(2) The braided vector spaces (CY, &) and (CY,c2) are t-equivalent.
(3) The braided vector spaces (CY,c%) and (CY,&) are t-equivalent.

Proof

(1) By Theorem 5.13, it is enough to show that the map
U':C(X x A)®">C(X x 4)®",

Un((ilvlpl)® ®(iﬂ7 ‘//n)) = (lpl lpn)(a) Tn((l.17lp1)® ®(iﬂ7 lpn))>

satisfies U”Sf/ = cI.Q/ 41 U". This is a straightforward computation.
(2) Let I', be the image of the group homomorphism p" : B, — Sy« induced by the
rack structure on X. Let A4, = > ger, 9 be a non-normalized integral of the Hopf

algebra CI',,. The group I',, acts on the vector space Fun(X”,CX) in the usual

way; let " = A, - §; where J; is the function 9, (iy, ...,i,) = i;. We write
=
keK"

where #}, is actually a function from X" to X and K" is an index set. Let
Ri(i1, ... i) = ( Z 51']l>;12(i2,...,in),i1+l>aa

R?(ll, ...,in) - R’li(i[,i[[>il7itl>i2, ...7l.fl>i[_]7i[+17 ...,in), t>2.
We consider the map U": C(X x A)®"->C(X x 4)®",

U’%(il,lﬁ])@ ®(i’1’ l//n)) = lpl(R’f) Wn(RZ)Tn((llvlpl)® ®(iﬂa ‘/jn))'
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By Theorem 5.13, it is enough to show that U, satisfies U"SjFJ+1 = CJ%+1 U'. A
straightforward computation shows that this is equivalent to the following set of
identities:

Rty ooosin) = R0 ooy i D inets iy oonin)s #6015 (5.41)
R?(il, ...,in) = R:l+l(l.1, ...,itl>it+1,it, 7ln)7 (542)
R’:(ll, "’7il’l) :(5,',’,‘H1+1a+ R}[’lfl(lla ...7i[_] I>i[, i[_17 ...,in)

+ (1 — (3,'17,',71)R;1(1.1, R A > PO P in). (543)
Now, Eq. (5.41) for t = 1 follows from the invariance of the integral, whereas
for t>1 follows from the definition and the case ¢ = 1. Clearly, (5.42) follows

from the definition also. Finally, (5.43) can be shown by induction on n and ¢.
(3) follows from (1) and (2). O

6. Nichols algebras and pointed Hopf algebras
6.1. Definitions and tools

The Nichols algebra of a rigid braided vector space (¥, ¢) can be defined in various
different ways, see for example [AG,AS2]. We retain the following one. If we
consider the symmetric group S, and the braid group B, with standard generators
{71, ...,Tu—1} and {0y, ..., 0,_1}, respectively, then the so-called Matsumoto section
for the canonical projection B, —S,, o;+>1;, is the set-theoretical function defined
on xe§, by the recipe (i) write x = 1;, ---1;, in a shortest possible way, and (ii) replace
the 7;’s by a;’s, i.e., M(x) = g ---g;,. Then,

B(7) = @ ¥(V) =core( o I/ kg,).
n=0 n=2

where O, = > g M (x) is the so-called “quantum symmetrizer”. This presentation

of the Nichols algebra immediately implies:

Lemma 6.1. If (V,c) and (V,¢) are t-equivalent braided vector spaces (cf. Definition

5.10) then the corresponding Nichols algebras B(V) and B(V) are isomorphic as
graded vector spaces. In particular, one has finite dimension, resp. finite GK-dimension,
if and only if the other one has.

Proof. Easy. [

For a subspace J=T(V) we say that it is compatible with the braiding if
c(VRJ)=JRV and c(JRV)=V®R®J.



N. Andruskiewitsch, M. Graiia | Advances in Mathematics 178 (2003) 177-243 227

Lemma 6.2. Let (X,[>) be a rack, let qeC* and let q = q be the cocycle q; =
q Vi,jeX. Let (V = CX, ") be the associated braided space and let JST (V) be a
subspace. Notice that T(V) is an Innpy (X)-comodule algebra with the structure
induced by V —>Clnnp (X)®V, x+—> ¢, ®x for xeX. Furthermore, T(V) is an
Innp (X)-module algebra via ™ . If J is Innp (X )-homogeneous and Inn (X)-stable,
then it is compatible with the braiding.

Proof. It is sufficient to prove that for xe X we have ¢(/J®Cx)=V®J and
¢(Cx®J)<=J ®Cx. The first inclusion is a consequence of the homogeneity of J, the
second one is a consequence of the stability of J. [

Finite-dimensional Nichols algebras (as well as any finite-dimensional graded rigid
braided Hopf algebra) satisfy a Poincaré duality: let n be the degree of the space of
integrals (it is easy to see that the space of integrals is homogeneous with respect to
the Z-grading), then dim B'(V) = dimB"" (V) for all reZ. Furthermore, since
B(V) is concentrated in positive degrees, we have that 8" (V) = 0 for m>n; since
dim B°(¥) = 1 we have that dim 8" (V) = 1; since B(V) is generated by B'(V), we
have that dim B" (V) #0 for 0<r<n. We call n the top degree of B(V'). Choose then
a non-zero integral [ . There is a non-degenerate bilinear pairing (which is the same
as that in the proof of the Poincaré duality) given by (x|y) = Aif xp = 4 [ + terms of
degree <n. These facts, first encountered by Nichols [N], give a powerful strategy for
computing Nichols algebras. We state this strategy after the following definition.

Definition 6.3. For r>2, let J, be the ideal generated by @/_, ker(Q;). Let B, (V) =
T(V)/J,, which has a projection B,—%B(V). It is not difficult to see that

", ker(Q;) is a coideal which is compatible with the braiding, whence B, (V) is
a braided Hopf algebra. Moreover, it is graded, it is generated by its elements in

degree 1, and in degree O it is 1-dimensional. Then it fulfills the same properties
above about Poincaré duality as B(V).

Theorem 6.4. (1) Suppose that B,(V) vanishes in degree 2r + 1. Then B,(V) = B(V).
(2) Let J< ker(T(V)—>B(V)) be an ideal which is also a coideal and is compatible
with the braiding. Suppose that T(V)/J is finite dimensional, it has top degree n and
dim B" (V) #0. Then T(V)/J = B(V).
(3) Suppose that QAS,( V) is finite dimensional, it has top degree n and dim B" (V') #0.
Then B,(V) = B(V).

Proof.

(1) Follows from Poincaré duality: dim EB’r(V) = dim B'(V) for 0<i<r and the top
degree of B(V) is <2r.

(2) This is so thanks to the non-degenerate bilinear form of 7'(V)/J: let [ be an
integral in T(V)/J. If 0#xeker(T(V)/J—>B(V)), then there exists ye T(V)/J
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such that xy= [. But then [ eker(T(V)/J—>B(V)), which implies that
Im(7"(V)/J—>B(V)) =0, a contradiction.
(3) follows from (2). O

In the examples we present in Sections 6.3 and 6.5, we have computed the
quotients T(V)/J finding Grobner bases, with the help of [Opal]. We also used a
program in Maple with subroutines in C to find the dimensions of the ideals J, in
degree r for small r’s. Generators of J, have been found by hand, using differential
operators (see below). Thus, we have used part (1) of the Theorem. However, we
shall use part (2) in the proofs.

The best way to prove that certain elements vanish (or not) in a Nichols algebra is
given by the differential operators dy : B" (V) —»B" (V) (x* V*). These are skew
derivations. When V' = CX is given by a rack, we consider the basis {xe X} of V'
and {x*} its dual basis; we extend x* to B(V) by x*(ar) =0 if e B"(V), n#1. We
put then 9, = Oy« = (Id®x*) o 4 (here A4 is the comultiplication in B(V)). It can be
proved that for «e B"(V) (n>2) we have o = 0 if and only if Oy« (o) = 0 Vx*e V* (cf.
[N,G2]). We consider analogously defined derivations 0, in the algebras T'(V),

B,(V), T(V)/J for J an ideal as above.

6.2. Some calculations of Nichols algebras related to braided vector spaces of diagonal
group type

In this subsection we compute examples of Nichols algebras of braided vector spaces
arising from Example 5.15. We first recall some results on Nichols algebras of braided
spaces of diagonal group type, i.e., (V,¢) = (CX,¢7), where X is a trivial rack.

Proposition 6.5. Let (V,¢) be a braided vector space with V= Cx; @ --- ® Cxy and

c(x;®x) = q;x; @x;, 1<i,j<0.

(1) Assume that q; = q for all i,j. Thus
® (Nichols) If ¢ = —1, then B(V)~A(V), hence dim B(V') = 27,
o (Lusztig; see [AS2)) If q is a primitive third root of 1, then dim B(V) =27
when 0 = 2; and dim B(V') = oo when 0> 2.
o (Lusztig; see [AS2]) If ord ¢>3 and 6>2, then dim B(V) = 0.

(2) [AD] Assume that q; = —1Vi, gje {1} Vi,j. For i#j, set A;€{0,—1} such that
qiqii = (=)' Set also A; = 2. Then (Ayj)1<;j<q is a simply laced generalized
Cartan matrix. Thus

o If the components of the Dynkin diagram corresponding to (Aj;) are of type
A, (not necessarily the same m), then dim B(V) = 212°1 \where & is the set
of positive roots corresponding to (Aj).

o If the Dynkin diagram corresponding to (A;) contains a cycle, then
dimB(V)=o0. O
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Conjecture 6.6 (Andruskiewitsch and Dascalescu [AD]). Same notation as in (2)
above. Then dim B(V) = 2121 if (4;) is of finite type, and dim B(V) = oo otherwise.

Let us consider the Dynkin diagrams:

[ ] [ J
[ J [ ] [ J y [ J [ [ J
[
D, D

We shall need to assume only the following weaker form of the previous conjecture:

Conjecture 6.7. Same notation as in (2) above. Then dim B(V) = 212 if (4;) is of type
Dy, and dim B(V') = o if (4;) is of type Dgl).

We next consider a trivial rack X, a finite, non-trivial, abelian group A4, denoted
multiplicatively; and a non-constant function ¢ : X — 4. We set k;; = a,-aj’l, n; = id,
1 =0 Vi,jeX (cf. Example 5.15). Let ¥ = X x 4, let (gy);;.x be a collection of

scalars, let we A, let Aij =@ =: yifjl, for all i,j; define ¢ by (5.23).

Proposition 6.8. Let (V,¢) be the braided vector space (CY,c9).

(1) If ord g;;>3 for some i, then dim B(V) = 0.

(2) If ord q; = 3 for some i, then either A~ C,, the group of order 2 (hence 27 divides
dim B(V) if this is finite), or else dim B(V) = oo.

(3) Assume that q; = —1 for all i€ X. Furthermore, assume that qiiqji = (=) for all
i#jeX, where A;e{0,—1}; and that ordx;<2. Then, if A% C,, we have
dim B(V) = 0.

(4) Same hypotheses as in (3); assume that the group A~{+1}~C,. Let X, =
{ieX: o; = +1}. Assume that Conjecture 6.7 is true. Then
o Ifcard X, =1, card X_<3 and q;q;; =1 for all i#jeX_, then dim B(V) is

finite.
o [fcard X_ =1, card X| <3 and q;q; =1 for all i#je X, then dim B(V) is
finite.

e In all other cases, dim B(V) = 0.

Proof. Let ¥ = X x A4 and let Q}_g"ﬁ = q,-jqﬁ(;c;l). By Theorem 5.13 and Lemma 5.16,
it is enough to consider the braided vector space (W, ¢) = (CY,c2).
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Then (1) and (2) follow from Proposition 6.5, applied to the subspace CY;, where
Y; = {(i,y): yeA}. The divisibility claim in (2) follows from Proposition 6.17
below.

We prove (3). There exists i#j such that x; has order 2 (recall that ¢ is not
constant). Let E = {¢ed: ¢(x;) =1} and F={ped: p(x;) = —1}; clearly,
card E = card F. Assume that card E>1, and let ¢, #¢p,€E, y,#y,eF. There
are two possibilities:

o If ql'jqji = la then (ia¢l)a (la ¢2)7 (j?lp])7 (]7 lﬁz) Span a subspace U of W with
c(U®U)=U®U,; the associated Cartan matrix is of type Agl), hence
dim B(V) = .

L If Q[/qji = _17 then (ia¢1)7 (17 ¢2)a (ja¢l)7 (]7 ¢2) span a Subspace U Of W Wlth
c(U®U)=UQ®U,; the associated Cartan matrix is of type Agl), hence
dim B(V) = .

We prove (4). Let i#je X,; then k; = 1. Let us denote A = {e,sgn}. If giiq;i = —1,
then (i,¢), (i,sgn), (/,¢), (J,sgn) span a braided vector subspace of Cartan type with
matrix Agl); by Proposition 6.5 (2), dim B(V) = .

We assume then that g;;g; = 1 for all i#je X, and also for all i#;e X_. Since « is
non-trivial, both X, and X_ are non-empty. Let ie X, and consider the vector
subspace U spanned by ({i}uX_) x 4. If card X_ >3, then the Cartan matrix of the

braiding of U contains a principal submatrix of type DE‘U. If Conjecture 6.7 is true,
then dim B(}) = oo. Hence, we can assume that card X, <3. Also, if card X3 =2
then the Cartan matrix of W contains a cycle; by Proposition 6.5 (2), dim B(V) =
o0. The only cases left are card X, = 1, card X_ <3, orcard X_ =1, card X, <3. In
these cases, the Cartan matrices of W are of finite type; either A, X A4, or A3 X A3,
or Dy x Dy4. This concludes the proof of (4). O

Remark 6.9. (1) In part (2) of the proposition, if ord g; = 3, for some ie X, and
card 4 = 2, then our present knowledge of Nichols algebras of diagonal type does
not allow to obtain any general conclusion on dim B(V).

(2) In part (3) of the proposition, if ord g;;q;; >2, or ord k;;>2 for some i,je X,
then our present knowledge of Nichols algebras of diagonal type does not allow to
obtain any conclusion on dim B(V).

6.3. Concrete realizations of pointed Hopf algebras computed with Fourier transform

Here we give examples of groups with Yetter—Drinfeld modules as in Proposition
6.8. This in turn produces new examples of pointed Hopf algebras with non-abelian
group of grouplikes. We also give a new pointed Hopf algebra using Example 5.17.

Forn,meN, let F = Cy,, G = Cy,, be cyclic groups. Denote by x a generator of F
and by y a generator of G. Let F act on G by y<x = y*"*! and G act on F by
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y>x = x?"*1. We can consider then the group F>< G, which coincides with F x G as
a set and whose multiplication is defined by

(xiy/')(xkyl) _ xi(yj>xk)(yj<xk)yl — xi+k+jk(2n)y/‘+l+jk(2m).

Notice that the center Z(F<G) is generated by x?,3*. The conjugacy classes of
F <G have then cardinality 1 and 2, and they are {x?y¥}, {x?+1y¥ x2it2ntly2+2my
(X202 Ym0 20 )20 (20212421 Take y defined by y(x) =
2(») = —1, and the Yetter-Drinfeld modules V; = M(x**!,z), W, = M(y¥*!,y).
We have then the following examples:

(1) V ="Vy&® W,. By Proposition 6.8, V' is t-equivalent to a space of type A, X A4»,
and then dim B(V) = 2. We have a family of link-indecomposable pointed
Hopf algebras B(V)#C(F><G) of dimension 2° x 16mn = 2!%mnn. The smallest
example of this family is n = m = 1 with dimension 2'°. Another way to realize
this example is over the dihedral group D4 of order 8, as described in [MS, 6.5;
Gl1, 5.2].

2) V=Vo®V1@®W,. By Proposition 6.8, V' is t-equivalent to a space of type
Az x A3, and then dim B(V) = 2'2. We have a family of link-indecomposable
pointed Hopf algebras B(V)#C(F><G) of dimension 2'> x 16mn = 2'%mn, for
n>=2. The smallest example of this family is n=2, m=1, and then
dim B(V)#C(F><G) =2'2.32 =217,

3) V=Vo@Vi®V,® W,. By Proposition 6.8, V' is t-equivalent to a space of type
Dy x Dy. Assuming Conjecture 6.7, we have dim B(V) = 2>*. We have a family
of link-indecomposable pointed Hopf algebras B(V)#C(Fr<G) of dimension
224 x 16mn = 2¥mn, for n>3. The smallest example of this family is
n=3, m=1, and then dim B(V)#C(F><G) = 2% .48 = 2283,

Remark 6.10. Actually, in the examples above we have dim 2,;,<2 for any g,h
grouplikes. If we allow bigger dimensions, then we can take always D4 as
group.

We give now the algebras obtained from Example 5.17. One of them appears in
[MS], and then by Lemma 5.18 the other one has the same dimension. We give a full
presentation by generators and relations of both of them.

6.3.1. Nichols algebra related to the transpositions in Sq [MS]

Let X = {a,b,c,d, e, [} be the standard crossed set of the transpositions in S4 and
consider the braided vector space (V,¢) = (CX, ¢9) associated to the cocycle g = —1.
Here

a=(12), b=(13), c=(14), d=(23), e=(24), f=(34).
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Theorem 6.11 (Milinski and Schneider [MS, 6.4]). The Nichols algebra B(V) can be
presented by generators {a,b,c,d,e,f} with defining relations

2,0, E &P, A,

dc+ cd, eb+ be, fa+ af,

da+ bd + ab, db + ad + ba, ea+ ce+ ac, ec+ ae + ca,

Sb+cf +be, fe+bf +cb, fd+ef +de, fe+df + ed. (6.1)

To obtain a basis, choose one element per row below, juxtaposing them from top to
bottom:

(1,a),
(1,b,ba),
(1,¢,¢b, cba, ca, cab, caba, cabac),
(1,d),
(L,e,ed),
(LS.
Its Hilbert polynomial is then
PO)=(1+0)(1+t+ )1+ 1420420 + e+ 2) A+ 0)(1+ 14+ 2)(1 +1)
=(1+0' 1+ 1+ 2721 +2)?
=12+ 6" + 191 + 427 + 7145 + 9617 + 106/° + 96¢° + 711* + 427
+ 192 461+ 1.
Its dimension is 2°3% = 576. Its top degree is 12. An integral is given by abacabacdedy .
We give an alternative proof to that in [MS, 6.4] using Theorem 6.4.

Proof. It is straightforward to see that the elements in (6.1) vanish in B(¥’). One can
either use differential operators or either compute O, =1+ ¢ on them. Using
Grobner bases it can be seen that if J is the ideal generated by these relations, then
T(V)/J has the stated basis. Since J is generated by primitive elements, it is a
coideal. Furthermore, J is generated by homogeneous elements with respect to the
Inny (X)-grading, and it is invariant under the Innp (X)-action. By Lemma 6.2, it is
compatible with the braiding and then T'(V')/J is a braided Hopf algebra. Last, we
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show that abacabacdedf does not vanish in B(V): it is straightforward to
see that

0a0p040.0,050,0:040.040f (abacabacdedf’) = 1.

Now, we conclude by Theorem 6.4, part (2). O

To realize this example, one can take G =S4, g = (12), y =sgn. Then V =
M(g,z)e %% 7 is isomorphic to (CX, ¢"). We get a pointed Hopf algebra B(V)#CG
whose dimension is 576 x 24 = 2°3%. One can construct also a family of link-
indecomposable pointed Hopf algebras taking as group S4 x C,,, where C,, is the
cyclic group of m elements and m is odd. Let g = (12) x ¢ (¢ is a generator of C,,)
and let the character y be the product sgn x ¢ (¢ is the trivial character). Then
V = M(g,y) is again isomorphic to (CX,¢") and we get a pointed Hopf algebra of
dimension 2°3%m.

6.3.2. Nichols algebra related to the faces of the cube

Let X = {a,b,c,d,e, [} be the polyhedral crossed set of the faces of the cube (that
is, the 4-cycles in S4), where {a, [}, {b, e}, {c,d} are the pairs of opposite faces and
al>b = c¢. Consider the braided vector space (V,c¢) = (CX, %) associated to the
cocycle q = —1.

By Lemmas 6.1 and 5.18, the Nichols algebra of V" has the same Hilbert series as
that of the preceding example. We can indeed give the precise description of B(V):

Theorem 6.12. The Nichols algebra B(V) can be presented by generators
{a,b,c,d,e,f} with defining relations

a2’ bz’ 02’ dz’ 62? fz,
ec+ce, db+bd, fa+ af,
ca+ bc+ ab, da+ cd + ac, eb+ ba+ ae, fb+ ef + be,

fe+cb+bf, fd+dc+cf, fe+ed+df, ea+ de+ ad. (6.2)

To obtain a basis, choose one element per row below, juxtaposing them from top to
bottom:

(1,a),
(1,b,ba),

(1,¢,ch,cha),
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(1,d,dc,dcb),
(1) e7 ed)’

(L)

Its Hilbert polynomial is then
POy=(1+0)(A+t+)A+t+2+)A+t+2+) 1+t +2)(1+1)

=(1+ 01+ 1+ 271+
=2 461" + 1910 + 42 + 715 + 961" + 1061° + 9647 + 7144 + 4273
+ 197 + 61+ 1.
Its dimension is 2°3% = 576. Its top degree is 12. An integral is given by abacbadcbedy .

Proof. Again, the elements in (6.2) are easily seen to be relations in B(V). Using
Grobner bases, it can be seen that if J is the ideal generated by these elements, then
T(V)/J is as stated. We conclude now using Lemmas 6.1 and 5.18. O

To realize this example, one can take the G =S4, g = (1234), y = sgn. Then
V=M(g,7)eé¥% is isomorphic to (CX,c"). We get a pointed Hopf algebra
B(V)#CG whose dimension is 576 x 24 = 2°3%. Also here we get a family of link-
indecomposable pointed Hopf algebras taking the group Ss x C,, (m odd), g =
(1234) x t (¢t a generator of C,,) and y = sgn X &.

6.4. Some relations of Nichols algebras of affine racks

We first present relations in Nichols algebras related to affine racks. The relation
in part (1) of the following lemma is related to [MS, 5.7]; here the rack is more
general than there, there the cocycle is more general than here. Although the relation
in part (3) below has the same appearance than [MS, (5.24)], the racks and the
elements x, y are different.

Lemma 6.13. Let (A,g) be an affine crossed set. Let q=q and (V = CA,c") the
corresponding braided vector space.

(1) Let x1,x,€A4 and q = —1. Define inductively the elements x;e A (i=3) by x; =
Xi1P>x; 2. Let n be the minimum positive integer such that
X, — x1 eker Z;Zol (—g)'. Then in B(V) we have the relation

X2X1 + X3X2 + -+ + XpXu—1 + xX1x, = 0.

Furthermore, taking different pairs (x,,x1), this is a basis of the relations in
degree 2. In other words, consider in A X A the relation (xp,x1)~ (a,b) if
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there exists meN such that (a,b) = (X, Xm—1), where the x;'s are defined as
above. Then ~ is an equivalence relation, and the dimension of the space of
relations of B(V) in degree 2 (i.e., the kernel of the multiplication V® V —B(V))
coincides with the number of equivalence classes |A x A ~|.

If —q is a primitive (th root of unity, then the relations in degree 2 are the

chains
1

xox1 + (—g)x3x2 + (—g) xaxs + - + (=)' x1x,
such that /\n. The elements x;€ A and neN are defined as in part (1).
If(1—g+¢*—¢*)(x—y) =0and g = —1, then in the Nichols algebra B(V') we
have the relation
xyxy + yxyx = 0.

The element xyxy + yxyx is homogeneous with respect to the Inn (A)-grading.
Furthermore, in the algebra ‘Bz( V) (see Theorem 6.4) the element xyxy + yxyx is
primitive. In other words, if Q2 Q, is an Innps (A)-homogeneous coideal, then the
ideal generated by Q + C(xyxy + yxyx) is also an Inn (A)-homogeneous coideal.
IFl—g+¢)(x—2)=(1—-9g+¢*)(y—2)=0and q= —1, then in the Nichols
algebra B(V') we have the relation

xyzxyz + yzxyzx + zxyzxy = 0.

The element xyzxyz+ yzxyzx + zxyzxy is homogeneous with respect to the
Inny (A)-grading. Furthermore, in the algebra B,(V) (see Theorem 6.4) the
element xyzxyz + yzxyzx + zxyzxy is primitive. In other words, if Q=20, is an
Inny (A)-homogeneous coideal, then the ideal generated by Q + C(xyzxyz +
yzxyzx + zxyzxy) is also an Inny (A)-homogeneous coideal.

Proof
(1) It is easy to see by induction that

-2
Xy = Z (_g)l(XZ —x1) +Xx1.
i=0

Then x,> x,_1 = x,11 = x1 and x> Xx, = x,12 = x. It is easy to see that, g
being invertible, the chain corresponding to x| = x;, x; = x,4; is exactly the

same. This is because x,, 1 — x, = (—g)H (x2 — x1). This proves that the relation
~ is an equivalence relation. On the other hand, the relations in degree 2 are
exactly the kernel of 1 + ¢. Thus, we compute

(1 4+ ) (rax1 + x3x2 + -+ + X1Xy)
= X2X] — X3X2 + X3X2 — X4X3 + -+ + XX, — X2X)

=0.
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Observe that for x; = x, = x the minimum # is 1 and we get the relation x> = 0.
To see that these relations generate all the relations in degree 2, let us take, for a
(not necessarily primitive) nth root of unit {, the vector

x2x1 + {x3x0 + Cxaxy + -+ v
It is clear that this vector is an eigenvector of ¢ with eigenvalue %1 Thus, each of

the strings (x1, X2, ..., x,) occurs n times, one for each nth root of unity, and each
of these times with a different eigenvalue. By a dimension argument, we have
diagonalized ¢ and we have picked up the eigenspace associated to —1.

(2) The same eigenvectors found in the previous part are eigenvectors here, though
their eigenvalues are ¢/(. Thus, for a chain of length n to be a relation, one must
have ¢/{ = —1, i.e., —g must be an nth root of unity.

(3) Let z=yD>>x, w=zD>y. By the previous part, we have in B(}V)

2 2 2 2 0
’

X =y =z =w = yx+zy+wz+xw=0.

Let us apply now 0, to the alleged relation. We get
Oy (xyxy + yxyx) = xzy + Xyx — zyz — yxz = x(zy + yx) — (zy + yx)z
= —x(wz + xw) + (wz 4+ xw)z = —xwz + xwz = 0.

Analogously, dy(xyxy + yxyx) = 0. If a#x,a#y, then 9,(xyxy + yxyx) = 0 as well.
This shows that xyxy + yxyx = 0 in B(V), but we have claimed a stronger fact. To
see that xyxy + yxyx is primitive modulo J,, we must prove that in 7(¥V) we have

A(xyxy + yxyx) € (xyxy + yxyx) @1 + 1@ (xyxy + yxyx) + T(V)® L, + L& T(V).

Now, 4 is a graded map: 4 = @, ,4nm, Where A, : T (V)>T"(V)QT™(V).
We must prove then that the images of xyxy + yxyx by 4,3, 42, and 43 lie in
TV)®J,+,®T (V). The previous argument, with derivations, shows that
A3 1 (xyxy + yxyx)eJo® V. For the others, let us introduce the following notation:
if meN, we take the basis {x|---x,, | x;e 4 Vi} of T"(V). Let {(x---xn)* | x;€4 Vi}
be the dual basis, and let 9y, ..,, = (id® (x1---x,)*) o 4. These maps are skew
differential operators of degree m and for m = 1 they coincide with the derivations.
We have then for WeT"(V),

QimmW) = S 0, (W) @ (x1-+x0).

X1 €A,....xp€A

We prove now that 4;,(xyxy + yxyx)e T(V)®J, + [, @ T(V). Clearly, 4, (xyxy +
yxyx) = 0 unless {a,b} ={x,y}. Since xx and yy are in J, it is sufficient to see that
the image of xyxy + yxyx by 0y, and 0, lies in J>. Let ¢t = x>y and s = ¢>> x. Then
st+tx+ xy+yseQ,. Furthermore, xD>z=xD>(D>x)=xD>y)>xD>x)=
t>x =s5. Now, it is straightforward to check that Oy,(xyxy + yxyx) = st + tx +
xy + yseJ>. The computation for 0,, is analogous. Finally, it is easy to see that
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Oxyx (Xyxy + yxyx) = Opny(xyxy + yxyx) =0, which proves that A;3(xyxy+
yxyx)eT(V)®J,+LQT(V).

It remains to be proved that xyxy + yxyx is Innpy (4)-homogeneous. This is
equivalent to prove that ¢,¢,¢.¢, = ¢,b.¢p,¢,. Take ae A. We have ¢, ¢ (a) =

(1 —g)x+g(1 —g)y + g*a, and then
bbb, (a) =(1+¢") (1 —g)x+g(1 —g)(1 +¢*)y +g'a
=x =gy +9(l-g+¢)y-x) +gla=x-g'y+(—x)+g'a
=y—g'r+g'a
Analogously, ¢,¢.¢,¢.(a) = x — g*x + g*a. Then
b bbby (a) — ¢, (a) = (1 = g*) (v —x) = 0.
(4) Let us define the following elements in A:
h=ybz=(1-g)y+gz,
s=xDy=(>1-g)x+ gy,
t=xPh=(1-g)x+y—(1—-g)z,
r=xPz=(1-g¢g)x+ygz,

b=x>Obr)=x+y--z
One can check that t = sI>r, b = yD>¢. It is straightforward to check that any two of
these elements satisfy that their difference lies in the kernel of 1 — g + ¢*. This is so
because each of these is an affine combination of x,y,z whose parameters are
polynomials in ¢ (and any such polynomial leaves ker(1 — g + ¢*) invariant). By the
first part, we have the following relations in B,(V):

RepPoPopRo=pP =P,
hy+yz+zh=sx+xy+ys=tx+xh+ht=rx+xz+zr=0, (6.3)

sr+rt+ts=by+yt+th=1zsz—szs =0.

Notice that for any two of these elements, say xi, x3, if we put x3 = x, > x; we then
get x2x) + x3x2 + x1x3 = 0, and then, since x7 = x3 = 0, we have x;x2X] = x2X]X2.
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This explains the relation zsz — szs = 0 above. As in the previous case, we must
prove that the image of xyzxyz+ yzxyzx +zxyzxy by Ais, Asa, A3z, Aap
and 4s; lies in L®T(V)+ T(V)®J,. This is a very long computation, but
it is straightforward and we give only two examples: for 4s; we apply 0, and
for 433 we apply Oy and 0O,y,. Let us call W = xyzxyz + yzxyzx + zxyzxy.
We have

Ov(W) = —srxsr + Xyzsr — yzsrx + yzxyz + zSrxs — zxyzs,
O (W) = txb + yzt — ztx,

Oyxy (W) = xhb — hby — zxh.

It can be seen that relations (6.3) imply that the first of these elements lies in J,. The
second and third elements do not lie in J>; however, since modulo J, we have
xyx = yxy, in the image by 433 we have

Oy (W) @ xyx + Oy (W) @ yxy

= (txb + yzt — ztx + xhb — hby — zxh) ® xyx modulo T(V)® J>.

Now, it can be seen that relations (6.3) imply that txb + yzt — ztx + xhb — hby — zxh
lies in J,. The proof that W is Innp (A4)-homogeneous is analogous to that of
xyxy + yxyx being homogeneous in part (3). [

Remark 6.14. If 4 =[F,, g is the multiplication by w# — 1, then the minimum
n in part (1) of the Lemma is always the order of —w as a root of unit in F,, except

for x; = x; = x. We have then exactly p’ +’# independent relations in degree 2,

and therefore the dimension of B*(V) is =1(p* — p'). If w = —1, we have the same
result with n = p = char(F,). Furthermore, if # = 4 then we can apply part (3) for
any two elements x, ye 4. If n = 3 then we can apply part (4) for any three elements
X,y,z€A.

6.5. Examples of Nichols algebras and pointed Hopf algebras on affine racks

We present here two examples. In both we have relations given by Lemma 6.13.

6.5.1. Nichols algebra related to the vertices of the tetrahedron [Gl]

Let X = {1,2,3,4} be the polyhedral crossed set of the vertices of the tetrahedron
and consider the braided vector space (V,c¢) = (CX, ") associated to the cocycle
qg=-—1.
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Theorem 6.15. The Nichols algebra B(V') can be presented by generators {1,2,3,4}
with defining relations

]2 22 32 42
31423412, 41 +34+13, 42421 + 14, 43 +32 424,
321321 + 213213 + 132132, (6.4)

To obtain a basis, choose one element per row below, juxtaposing them from top to
bottom (e is the unit element):

(e 1),

(e,2,21),
(e, 321),
(e,3,32),

(e,4).

Its Hilbert polynomial is then P(f) = £ + 478 + 8¢ + 1165 + 126 + 12¢* + 114 +
81> + 4t + 1. Its dimension is 72, its top degree is 9, an integral is given by 121321324,

Proof. As explained in Remark 1.26, the tetrahedron crossed set coincides with the
affine crossed set (Fs4,w), where w? +w+1=w? —w+ 1 =0. Cases (1) with n =3
and (4) of Lemma 6.13 apply immediately and we see that the elements in (6.4) are
relations in B(V). Let J be the ideal generated by these elements. It can be seen that
J is Inn (X)-stable. Since by Lemma 6.13 part (4) the element 321321 + 213213 +
132132 is Innp> (X)-homogeneous and Q, is compatible with the braiding, then J is
compatible with the braiding. Moreover, by Lemma 6.13 part (4) again, it is a
coideal. Now, it is straightforward to see that

8182623482848284(121321324) =2eC.
We now use Theorem 6.4 part (2). [

To realize this example, one can take the affine group F4><[F; ~ A4 and its direct
product with C,. That is, we take G = A4 x C,. Denote by ¢ the generator of C, and
let g=(123)xteG. Take y€G, y(o x )= (—1). Then V = M(g,7)eS¥T is
isomorphic to (CX, ¢%). We get a pointed Hopf algebra B(V)#CG whose dimension
is 72x24 =203, We get a family of link-indecomposable pointed Hopf
algebras replacing C, by C,, (m even), g = (123) x ¢ (¢t a generator of C,) and

26 x 1) = (~1)".
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6.5.2. Nichols algebra related to the affine crossed set (Zs, >?)

Let X = {0, 1,2, 3,4} be the affine crossed set (Zs, Dz) and consider the braided
vector space (V,c¢) = (CX, ") associated to the cocycle g = —1. That is, ¢(i®j) =
—(2j - i) ®i.

Theorem 6.16. The Nichols algebra B(V') can be presented by generators {0,1,2,3,4}
with defining relations

0%, 1%, 22, 3%, 4%,

32420+ 13 +01, 40 + 21 + 144 02, 41 + 34 + 10 + 03,

42 +30 423+ 04, 43431 +24 + 12,

1010 + 0101. (6.5)

To obtain a basis, choose one element per row below, juxtaposing them from top to
bottom (e is the unit element):

(¢,0),
(e,1,10,101),
(e,2,21,212,20,201,2012,2010,20102,201020),
(e,3,31,312,30,303,3031,30312),
(e,4).
Its Hilbert polynomial is then
POy =1+ 0 +t4+2+)A+1+422 +20 426+ + 1)
X (I+t+228 428 +14+ 1)
=110 456 4 156" 4 3511 + 661" + 1056 + 1450 + 1752 + 1864 + 175/
+ 14565 + 1058 + 661* + 356 + 15/ + 5t + 1.

Its dimension is 1280. Its top degree is 16. An integral is given by 0101201020303124.

Proof. The relations are given by Lemma 6.13, parts (1) and (3). By the same result,
if J is the ideal generated by (6.5) then it is a homogeneous coideal. It is not difficult
to see that it is also Inn> (X)-stable, whence it is compatible with the braiding. Using
Grobner bases, it can be seen that relations (6.5) yield the stated dimensions in each
degree. Using Theorem 6.4 part (2), it is sufficient to see that 0101201020303124 does
not vanish in B(V) in order to prove the Theorem. It is straightforward then to
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compute that

010004010402 03040204050:03040504(0101201020303124) = 1 e C. O

To realize this example, one can take the group G = Z/5>(Z/5)", y((a,2)) =
(—l)i, g=1(0,2). Then V = M(g,y) €% is isomorphic to (CX,c"). We get a
pointed Hopf algebra B(V)#CG whose dimension is 1280 x 20 = 21952, We get a
family of link-indecomposable pointed Hopf algebras replacing (Z/5)* by Cyp,
where a generator ¢ of Cy,, acts as 2, i.e., tit™! = 2i for ieZ/5. Then take g = 0 x ¢,
wix )= (=1Y, V=M(g,y)el¥F. The algebra B(V)#CG has dimension
21052,

6.6. A freeness result for extensions of crossed sets

The concept of extension of crossed sets is not only useful in classification
problems of them. It turns out to be useful as well when one wants to compute
Nichols algebras, as the following Proposition asserts.

Let X, Y be quandles and let X — Y be a surjective quandle homomorphism. We
assume that X is indecomposable, hence Y is also indecomposable and X ~Y x, S
for some dynamical 2-cocycle « and some set S (see Definition 2.2). Let q: Y X
Y > G, be a 2-cocycle. Notice that q; = q; for all i, je Y. Let  be the pull-back of q

along 7, that is §uy = Gy () Let (V,¢) = (CX, %), (V', ) = (CY, ). Let Py (1)
be the Hilbert series of B(V) and Py (t) the Hilbert series of B(V").

Proposition 6.17.

(1) If the order of q,; is >3 and card S=2 then dim B(V') = co. If the order of q;; is 3
and card S=3 then dim B(V) = .

(2) Let Ps(t) be the Hilbert polynomial of B(W), where (W, cy) = (CS, ¢%) (i.e., the
cocycle is the constant q;)). Then Ps| Py.

(3) If a is a constant cocycle, Py | Py.

Proof. (1) follows easily from [Gl, Lemma 3.1]. (2) follows at once from [G2,
Theorem 3.8.1]. (3) can be proved using a remark right after the proof of [MS,
Theorem 3.2]. Actually, this remark is a generalization of Theorem 3.2 in [MS],
which in turn is a generalization of [G2, Theorem 3.8.1]. The remark goes as follows:

let (R, ¢), (R, ") be braided Hopf algebras with maps R’ L RE Rof algebras and
coalgebras such that ¢i = id, and such that
(i®id)d(p®id) = ([d® ¢)c(id®i), c(ip®id) = (Id®ip)c. (6.6)

Let p: R>R®R', p=(id®¢)4g, and let K = R°F = {reR|p(r) =r®1}. Then
the conditions on i and ¢ are sufficient to prove that u: KQR' >R, u=mp(id®1)
is an isomorphism.
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Thus, we can find i: B(V'")>B(V) and ¢ : B(V) - B(V’) satisfying the previous
conditions. By the definitions of Nichols algebras, to give an algebra and coalgebra
map it is enough to give the maps at degree 1 and verify that they commute with the

braidings. That is, V' 4 v % ¥ such that c(i®i) = (i®i)c and similarly with ¢.
We take i(y) :l—é‘zn(x):y x, ¢(x) =mn(x). It is immediate to see that /i and ¢

commute with the braidings, using that 7 is a map of crossed sets and § = n~'(q).
The conditions in (6.6) are also easy to verify; for the second one it is used that o is a
constant cocycle. [
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