UN ESTUDIO DFT SOBRE LA ADSORCIÓN Y DISOCIACIÓN CH₄, O₂ Y SO₂ SOBRE Cr₂O₃ (0001)

A DFT STUDY OF THE ADSORPTION AND DISSOCIATION OF CH₄, SO₂ AND Cr₂ O₃(0001)

S.N. Hernandez Guiance ^{a,b}, I.D. Coria ^c, I.M. Irurzun ^b,*, E.E. Mola ^b,1

a Facultad de Química, e Ingeniería, Pontificia Universidad Católica Argentina Mendoza 4197 CP 2000 Rosario, Argentina b Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) – Universidad Nacional de La Plata – CCT-La Plata –CONICET. Calle 64 y Diagonal 113, 1900 La Plata, Argentina. c Universidad del Centro Educativo Latinoamericano. Av. Pellegrini 1332 CP 2000 Rosario, Argentina.

email: i_irurzun@hotmail.com

Recibido: 03/10/16; aceptado: 07/02/17

En el presente trabajo se estudian las estructuras y geometrías moleculares del CH₄, SO₂ y O₂ adsorbidos sobre la superficie de Cr_2O_3 (0001). Mediante cálculos computacionales basados en la Teoría Funcional de la Densidad (DFT) analizamos los sitios más aptos para llevar a cabo la adsorción de cada una de las moléculas mencionadas, así como la influencia de de cada especie sobre la adsorción y disociación de las otras. Los resultados permiten comprender la activación que produce la presencia de SO₂ de la superficie de Cr_2O_3 (0001) para la oxidación de CH₄, como fue verificado experimentalmente.

Palabras clave: Catálisis, Oxidación de Metano, Reducción de Dióxido de Azufre, DFT.

In the present work, we study the structures and molecular geometries of CH_4 , SO_2 and O_2 adsorbed on Cr_2O_3 (0001). Using computational calculations based on the Density Functional Theory (DFT), we analyze the most suitable sites to carry out the adsorption of each of the molecules mentioned, and the influence of each species on the adsorption and dissociation of the others. The results allow us to understand the activation of the Cr_2O_3 (0001) surface, which leads the presence of SO_2 during the oxidation of CH_4 , as was experimentally verified.

Keywords: Catalysis, Methane oxidation, Sulfur dioxide reduction, DFT.

I. INTRODUCCIÓN

Las superficies de los óxidos de metales de transición son de gran interés en el campo de la catálisis y la corrosión. Las ciencias del medio ambiente han prestado mucha atención a las superficies catalíticas, que han sido utilizadas con el fin de eliminar moléculas contaminantes para la atmósfera (como SO₂, CH₄, CO y CO₂) **1,2**. Entre éstas el SO₂ es uno de los productos emitidos a la atmósfera proveniente de fuentes naturales y antropogénicas que puede convertirse en lluvia ácida.

La mayor parte del SO₂ que llega a la atmósfera (\approx 3/4) es producido por las actividades humanas, sobre todo por la combustión de los combustibles fósiles. Más de la mitad de la producción mundial proviene de unos pocos países desarrollados **3-5**. En las chimeneas industriales, la reducción del SO₂ ocurre por reacción con CH₄, a la vez que este último es oxidado a CO₂ por el O₂. Por lo tanto es de interés el estudio de las siguientes reacciones:

$$2SO_2 + CH_4 \rightarrow 2S^0 + CO_2 + 2H_2O \tag{1}$$

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$
 (2)

$$SO_2 + CH_4 + O_2 \rightarrow S^0 + CO_2 + 2H_2O$$
 (3)

así como el desarrollo de catalizadores que propicien la oxidación de CH_4 en presencia de SO_2 y O_2 .

En trabajos anteriores estudiamos los óxidos de algunos metales de transición (Co, Ni, Fe, V, Mn, Cr y Mo) soportados en alúmina **6** con el objetivo de determinar la mejor superficie para capturar SO₂. El Cr_2O_3/Al_2O_3 resultó ser el mejor adsorbente **7,8**, el cual además cataliza la oxidación de CH₄ para obtener CO₂. Su uso se justifica además por su resistencia térmica, mecánica y su posibilidad de regeneración.

También determinamos experimentalmente las energías de activación de las reacciones mencionadas, bajo condiciones estequiométricas, sobre Cr₂O₃/Al₂O₃. **9**

Concluimos que la presencia de SO_2 favorece la oxidación de CH_4 , disminuyendo la energía de activación.

En este trabajo, presentamos resultados teóricos basados en la teoría de Funcional Densidad sobre la adsorción y disociación de las diversas especies

DATOS EXPERIMENTALES (LEED) Y SIMULACIONES MD 8,22

Espacio	DFT+U		GGA		LEED	MD
entre capas						
	Abs	%	Abs	%	%	%
Cr ₁ -O ₂	0.37	-61	0.44	-53	-38	-58
O ₂ -Cr ₃	1	+6	1.07	+14	-22	0
Cr ₃ -Cr ₄	0.21	-44	0.65	+70	-25	-36
Cr ₄ -O ₅	1.02	+9	1.05	+12	+12	+17
O ₅ -Cr ₆	0.92	-2	1.13	+12		
Cr ₆ -Cr ₇	0.41	+7	0.17	-56		
Cr ₇ -O ₈	0.92	-2	1.03	+10		
O ₈ -Cr ₉	0.93	-1	0.89	-5		
Cr ₉ -Cr ₁₀	0.39	+3	0.19	-5		

involucradas en las reacciones (1)-(3) sobre Cr_2O_3/Al_2O_3 .

Nuestro propósito es proveer información teórica adicional para comprender el mecanismo de la reacción de oxidación de CH_4 en presencia de SO_2 y O_2 , sobre Cr_2O_3/Al_2O_3 .

II. MÉTODOS

El programa de simulación VASP (Viena Ab-initio Simulation Package) es un código que permite realizar cálculos mecanocuánticos ab-initio: energía total, dinámica molecular, entre otros, simulando la interacción entre diferentes tipos de moléculas y compuestos **8**, 10-12. Los trabajos de cálculo realizados con esta herramienta se basan en el método de ondas planas y pseudopotenciales, incluidos en la teoría del funcional de la densidad (DFT) 10-13.

Mediante el código VASP, se diseñó la estructura cristalográfica en masa del Cr_2O_3 en dirección (0001), luego se llevó a cabo el corte y optimización del sistema, con la finalidad de generar una superficie estable.

Se han utilizado diferentes enfoques teóricos para estudiar la superficie α -Cr₂O₃(0001) **14-19**. Hay un acuerdo general entre los las diferentes metodologías en las cuales la superficie se somete a fuertes relajaciones verticales. En este artículo se toma en cuenta los fuertes efectos electrónicos de la correlación descrita por un tipo de Hubbard en el lugar de la repulsión de Coulomb, donde se excluye en la descripción funcional de la densidad **10**.

La elección de la cara (0001) radica en el hecho de que Cr_2O_3 en estado natural tiene una estructura de este tipo en un 97,20 % en todo su volumen, la cual mantiene hasta temperaturas que rondan los 973 K.

Sobre esta superficie se estudió la adsorción individual y en simultáneo de las moléculas de SO_2 , $CH_4 y O_2$.

Tabla 1: Variación absoluta (Å) y porcentual de los espaciamientos entre capas atómicas del sustrato α -Cr₂O₃ (0001) luego de realizar el corte y optimización de la superficie. Los espaciamientos iniciales son: Cr-O=0.94, Cr-Cr=0.38 Å. Se incluye una comparacion con

Todos los trabajos se llevaron a cabo dentro de una supercelda, cuyas dimensiones son: base romboide 1x1 con vista 0001, (plano X-Y sobre el cual se añaden los átomos y moléculas), de 4.954 en eje x y 4.009 Å en eje y, compuesta por un cuadrante de 4.954 x 4.954 Å. Su altura es de 20 Å. Cada capa de sustrato está compuesta por un átomo de Cromo, tres átomos de Oxígeno y un átomo de Cromo, cuyo espesor es de 2.263 Å. Sin embargo, de aquí en más se denomina capa a cada una de las compuestas por un sólo tipo de átomo. La supercelda utilizada se muestra en la Figura 1, mientras que en la Tabla 1, se muestran parámetros geométricos obtenidos luego de realizar la optimización de la superficie **8**.

Figura 1. supercelda del Cr₂O₃ (0001). GRIS, C; ROJO, O.

En los cálculos se utilizan ondas planas de hasta 400 eV y pseudopotenciales, con la finalidad de resolver las ecuaciones de Kohn-Sham **20**. Las energías de intercambio y correlacion se calcularon mediante la aproximación de Densidad Local (LSDA) en la forma de Perdew-Zunger **21**. En el método DFT+U se emplearon los valores de J = 1 y U = 5 (10) . La convergencia se considera alcanzada cuando las fuerzas sobre los iones son menores que 0,03 eV/Å. Las condiciones de borde periódicas se aplican en las tres direcciones perpendiculares.

Para la primera zona de Brillouin se utilizó una red centrada en el punto gamma de (3x3x1), y sólo el punto gamma para la supercelda cúbica destinada a la optimización de las moléculas aisladas **8**

La energía de adsorción de cada molécula de adsorbato se calcula como:

$$E_a = E$$
 (Adsorbato/Cr₂O₃ – E(Adsorbato – E(Cr₂O₃) (4)

El primer término es la energía de la configuración optimizada de la molécula de adsorbato relajada y ligada a la superficie limpia. El segundo término es la energía de la molécula de adsorbato optimizada en fase gaseosa (aislada) y el tercer término es la energía de la superficie optimizada. Con esta definición, se tiene que los valores negativos de E_a obtenidos son para las configuraciones estables.

En un comienzo se optimizaron las estructuras de cada molécula aislada: son los denominados "sistemas simples":

- SO_2 sobre Cr_2O_3 (0001)
- CH_4 sobre Cr_2O_3 (0001)
- O_2 sobre Cr_2O_3 (0001).
- S sobre $Cr_2O_3(0001)$
- CO sobre Cr₂O₃ (0001)
- CO₂ sobre Cr₂O₃ (0001)

Utilizando los resultados correspondientes a las geometrías más estables de estos sistemas, se adsorbieron moléculas de otras especies químicas, son los llamados "sistemas compuestos":

- SO₂ sobre O₂ adsorbido previamente en Cr₂O₃ (0001), en estado molecular y disociativo
- CH₄ sobre O₂ adsorbido previamente en Cr₂O₃ (0001), en estado molecular y disociativo
- O₂ en estado molecular sobre SO₂, adsorbido previamente en Cr₂O₃ (0001)

En una primera etapa, los trabajos fueron realizados mediante pseudopotenciales basados en la Aproximación de Densidad Local (LDA) **10,14**. Luego, con la finalidad de lograr una mayor precisión, se emplearon pseudopotenciales de Aproximación de Gradiente Generalizado (GGA).

III. RESULTADOS

Sistemas simples: adsorbato sobre sustrato

- SO_2 sobre Cr_2O_3 (0001): luego de generar la superficie limpia y la optimización de cada molécula aislada, se procedió a adsorber una molécula de SO_2 sobre la misma, en diferentes posiciones y geometrías. En estudios previos **8** se encontró la geometría más estable, en base al método de pseudopotenciales LDA. Los resultados finales se muestran en la Tabla 2: TABLA 2: GEOMETRÍA MÁS ESTABLE DEL SISTEMA SO₂ sobre Cr_2O_3 , optimizada en el formalismo DFT+U, y su energía de activación. Sustrato: gris, Cr; rojo, O. Adsorbato: azul, O; blanco, S.

$E_a(eV)$	Geometría		D S-O _{ads} (Å)	D S-Cr (Å)
	Plano X-Y	Plano X-Z		
-3.09			1.51	1.77

La adsorción de SO_2 en la superficie de Cr_2O_3 es un proceso de quimisorción que implica la formación de especies sulfito e involucra a los átomos de oxígeno de la superficie: el átomo de azufre se une a un átomo de oxígeno de la superficie, mientras que los átomos de oxígenos del dióxido de azufre se unen a átomos de cromo. CH₄ sobre Cr₂O₃ (0001): se procedió a adsorber una molécula de CH₄ sobre dicha superficie, en diferentes posiciones y geometrías. Los resultados finales más estables resumidos en la Tabla. 3, no demuestran una adsorción del adsorbato sobre la superficie en estudio en estado molecular.

TABLA 3: GEOMETRÍAS MÁS ESTABLES DEL SISTEMA CH_4 sobre Cr_2O_3 optimizadas en el formalismo DFT+U y
SUS ENERGÍAS DE ACTIVACIÓN. SUSTRATO: GRIS, CR; ROJO, O. ADSORBATO: CELESTE, H; AMARILLO, C.

$E_a(eV)$	Geometría		$D C-Cr_{sup} (Å)$	$D H_1$ - Cr_{sup} (Å)	$D H_2$ - Cr_{sup} (Å)
	Plano X-Y	Plano X-Z			
-0.02			5.25	5.84	5.44
-0.01			5.23	5.53	4.15
-0.01			3.78	4.75	4.12

- Adsorción molecular de O_2 sobre Cr_2O_3 (0001): Los resultados más estables obtenidos para este sistema se muestran en la Tabla. 4 y en la Fig. 2. Se observa que los dos átomos de la molécula de oxígeno se adsorben al mismo átomo de cromo de la superfície.

Tabla 4: Geometrías más estables para la adsorción molecular de O_2 sobre Cr_2O_3 optimizadas en el formalismo DFT+U y sus energías de activación. Sustrato: gris, Cr; rojo, O. Adsorbato: amarillo, S

$E_a(eV)$	Geometría		$D O_1 - O_2 (Å)$	$D O_1$ - Cr_3 (Å)	$D O_2$ - Cr_2 (Å)
	Plano X-Y	Plano X-Z			
-0.48			1.21	3.05	2.14
-0.45			1.34	2.00	1.99

Figura 2. Detalles geométricos de la primera estructura indicada en la Tabla 4 (el código de colores es el mismo).

- Adsorción disociativa de O_2 sobre Cr_2O_3 (0001): en este sistema, se dispuso los dos átomos de una molécula de O_2 sobre la superficie en estudio, para analizar la estabilidad de la molécula de adsorbato. La configuración más estable en estado disociativo presenta ambos átomos de O_2 adsorbidos sobre un mismo átomo de cromo de la primera capa (ver Tabla 5 y Fig 3):

TABLA 5: GEOMETRÍA MÁS ESTABLE PARA LA ADSORCIÓN DISOCIATIVA DEL OXIGENO SOBRE CR₂O₃, optimizada en el formalismo DFT+U, y su energía de activación. Sustrato: gris, Cr; rojo, O. Adsorbato: amarillo, O

$E_a(eV)$	Geometría		$D O_1 - O_2 (Å)$	$D O_1$ - Cr_3 (Å)	$D O_2$ - Cr_2 (Å)
	Plano X-Y	Plano X-Z			
-0.47			2.47	1.58	3.85

Figura 3. Detalles geométricos de la primera estructura indicada en la Tabla 5 (el código de colores es el mismo).

S sobre Cr_2O_3 (0001): se adsorbió un átomo de azufre sobre la superficie en 5 sitios: Sobre un átomo de cromo de la primera capa, obteniéndose una energía de adsorción de -0.59 eV, sobre un cromo de la tercera capa, y sobre el oxígeno de la segunda, la cuarta y la quinta capa 10.

Figura 4. Estructura optimizada más estable del S adsorbido en la superficie Cr_2O_3 (0001). Sustrato: gris, Cr; rojo, O. Adsorbato: verde, S.

CO sobre Cr_2O_3 (0001): se procedió a adsorber una molécula de CO, obteniéndose un energía de adsorción de -2.33 eV **10**.

 CO_2 sobre Cr_2O_3 (0001): luego se adsorbió una molécula de CO_2 en diferentes posiciones y geometrías. Se obtuvo un sistema más inestable que para el CO sobre la misma superficie, con una energía en la geometría más estable de -0.81 eV **5** (ver Fig. 5)

Figura 5. Estructura optimizada más estable del CO_2 adsorbido en la superficie Cr_2O_3 (0001). Sustrato: gris, Cr; rojo: O. Adsorbato: amarillo, C; azul, O.

Sistemas complejos: adsorción de una especie sobre otra especie adsorbida previamente sobre sustrato

Luego de obtener las geometrías más estables para la adsorción de una molécula sobre la superficie catalítica, se procede a estudiar la adsorción de una de las especies en estudio sobre otra especie adsorbida previamente sobre Cr_2O_3 (0001). De este modo se analiza la interacción entre especies gaseosas en superficie, obteniéndose las energías de adsorción de las configuraciones más estables, junto con las longitudes de enlace, la variación de los ángulos formados entre los átomos de dichas especies, y los nuevos compuestos obtenidos luego de concluir las interacciones entre ellos.

- CH_4 sobre O_2 pre-adsorbido molecularmente en Cr_2O_3 (0001): se estudió la adsorción de una molécula de metano, sobre la geometría más estable para la adsorción de una molécula de O_2 sobre la superficie. No se encontró un resultado de geometría estable, por lo que el metano no se adsorbe sobre la molécula de O_2 adosrbida sobre Cr_2O_3 (0001).
- CH_4 sobre oxígeno pre-adsorbido en forma disociativa sobre Cr_2O_3 (0001): se dispuso, en diferentes posiciones, una molécula de CH_4 sobre oxígeno adsorbido en forma disociativa sobre el sustrato en estudio. Para este estudio se empleó, como en el caso anterior, la geometría más estable para la adsoción disociativa del oxígeno sobre Cr_2O_3 (0001). La disociación de metano en óxidos y metales tiene una barrera de activación de al menos 0.8 eV. Para estudiar la existencia de un estado disociado del metano en presencia de oxígeno pre-adsorbido la molécula de CH_4 se colocó directamente sobre el átomo de

oxígeno a una distancia de 2Å y se la fue acercando al mismo en forma discreta a lo largo del eje Z. En la geometría utilizada para la molécula de CH_4 tres enlaces C-H tenían una longitud de 1Å (correspondiente a la geometría estable de la fase gaseosa, mientras que el cuarto tenía una longitud de 1.4Å. Este último fue el enlace que se rompió durante la disociación. Se evaluaron 15 distancias diferentes. En cada posición se analizó la existencia de un estado estable en el que la molécula se encontrara disociada. A una distancia de 1.02 Å (similar a la longitud de enlace C-H) se obtuvo la disociación de la molécula de metano, y la formación de especies OH y grupos metoxilo (-O-CH₃) como se muestra en la Fig. 6:

Figura 6. Geometría optimizada más estable del CH_4 sobre oxígeno pre- adsorbido en forma disociativa en la superficie Cr_2O_3 (0001). Sustrato: gris, Cr; rojo, O. Adsorbatos: amarillo, O; rosa, C; naranja, H.

La geometría más estable tiene una energía de -1.79 eV. La energía siguiente encontrada es de -1.50 eV, cuya geometría de adsorción se muestra en la Fig 7.

Figura 7. Geometria de adsorción (E_a = -1.50 eV) del CH₄ sobre sobre oxígeno pre- adsorbido en forma disociativa en la superficie Cr₂O₃ (0001). Sustrato: gris, Cr; rojo, O. Adsorbatos: amarillo, O; rosa, C; naranja, H.

 CH_4 sobre SO_2 , adsorbido previamente en Cr_2O_3 (0001): En la geometría de adsorción más estable, con una energía de -0.28 eV, se obtiene la formación de un hidroxilo con un átomo de O de la tercera capa del sustrato, mientras que el azufre se une al grupo metilo (CH_3) y los oxígenos del SO₂ a los átomos de Cr de la superfície. La situación se muestra en la Fig. 8.

Figura 8. Geometría optimizada más estable del CH_4 sobre SO_2 previamente adsorbido en la superficie Cr_2O_3 (0001). Sustrato: gris, Cr; rojo, O. Adsorbatos: amarillo, O; rosa, C; naranja, H.

 O_2 molecular sobre SO₂, adsorbido previamente en Cr_2O_3 (0001): Se obtuvo una energía de adsorción de -1.00 eV para la configuración más estable, la disociación del oxígeno da lugar a la formación de la especie SO₃ en superficie.

Como en los casos anteriores, el O_2 (con la geometría correspondiente a la configuración más estable en fase gaseosa) se colocó directamente sobre el SO_2 y se lo fue

acercando en pasos discretos a lo largo del eje Z. En cada paso, se esperaba a la convergencia de los cálculos y se evaluaba la existencia de un estado disociado estable. Se evaluaron 15 distancias diferentes, la disociación de la molécula se obtuvo a una distancia de 1.3 Å.

Figura 9. Geometría optimizada más estable del O_2 sobre SO_2 previamente adsorbido en la superficie Cr_2O_3 (0001). Sustrato: gris, Cr; rojo, O. Adsorbatos: amarillo, O proveniente del O_2 ; blanco, S; azul, O proveniente del SO_2 .

IV. CONCLUSIONES

El CH₄ no se adsorbe sobre Cr_2O_3 (0001) de manera estable, la presencia de oxígeno adsorbido en forma molecular no favorece la adsorción. Sin embargo en presencia de dióxido de azufre u oxígeno atómico puede descomponerse dando lugar a la formación de especies hidroxilo, grupos metilo adsorbidos sobre átomos de azufre y/o grupos metoxilo (R-O-CH₃).

El SO₂ se adsorbe dando lugar a la formación de especies sulfito involucrando átomos de oxígeno superficiales o previamente adsorbidos. No se observa la formación de especies sulfato. La adsorción de O₂ en presencia de SO₂, favorece la disociación del oxígeno para dar lugar a la formación de especies sulfito.

El O_2 se adsorbe sobre este sustrato tanto en forma molecular como disociativa, prácticamente con la misma energía. En presencia de SO₂, el oxígeno se adsorbe disociándose y dando lugar a la formación de especies sulfito.

En un trabajo anterior **9** demostramos experimentalmente que la energía de activación de la reacción (3) es menor que la energía de activación de la

reacción (2) en condiciones estequiometricas. La presencia de SO_2 , estaría activando la superficie del catalizador favoreciendo la disociación de oxigeno, y la descomposición de metano.

Estudios espectroscópicos FT-IR sobre muestras de catalizadores utilizados en las reacciones (2) y (3) nos permitieron identificar especies hidroxilo y metilo como las halladas en este trabajo, como así también productos de dehidrogenaciones adicionales del metano **10**. Estos resultados serán presentados en un trabajo posterior, junto con cálculos DFT adicionales.

La estabilidad de la molécula de oxigeno adsorbida sobre la superficie Cr_2O_3 puede estar afectando la interacción del SO₂ en fase gaseosa con el oxigeno adsorbido y merece un estudio más detallado que será presentado en un trabajo posterior.

El tamaño de la celda utilizada en los cálculos, así como la existencia de condiciones de contorno periódicas simulan condiciones experimentales con un cubrimiento elevado de los adsorbatos. También los experimentos se realizaron en un reactor de lecho fijo y flujo continuo, bajo condiciones que no pueden compararse directamente con las teóricas. Sin embargo comparaciones previas sobre la desorción de SO_2 arrojan conclusiones confiables de cálculos basados en DFT+U **8**.

Por lo tanto concluimos que estos cálculos pueden proveer información útil sobre las etapas elementales de las reacciones (1) - (3) con el propósito de establecer el mecanismo de la reacción.

V. AGRADECIMIENTOS

Este trabajo fue financiado por el Consejo Nacional de Investigaciones Científicas y Técnicas, la Agencia Nacional de Promoción Científica y Tecnológica, la Facultad de Ciencias Exactas de la Universidad Nacional de La Plata y la Facultad de Química e Ingeniería "Fray Roger Bacon" de la Universidad Católica Argentina.

VI. REFERENCIAS

- G. A. Somorjai, Y. Li in "Introduction to Surface Chemistry and Catalysis". Second Edition, JoHn Wiley & Sons Inc. New Jersey, USA (2010).
- 2- D. W. Lee, B. R. Yoo. Journal of Industrial and Engineering Chemistry 20 3947–3959 (2014).
- J. Morettón in "Contaminación del Aire en la Argentina", Ed. Universo, Argentina (1996).
- 4- X. Liu, B. Lin, and Y. Zhang. Journal of Cleaner Production, **113** 133-143 (2016).
- 5- B.R. Gurjar, Khaiwal Ravindra, Ajay Singh Nagpure. Atmospheric Environment **142** 475–495 (2016).
- 6- I. Coria, S. Medina, I.R. Ramos, A.G. Ruiz, Energeia 1, 49-65 (2003).
- 7- I. D. Coria, O. Carattoli, S. Hernandez Guiance, Y. Malik, Energeia 5, 30-39 (2007).

- 8- V.A. Ranea, S.N. Hernandez, S. Medina, I.M. Irurzun, I.D. Coria, E.E. Mola, Surface Science 605 489–493 (2011).
- 9- S. N. Hernandez Guiance, I. D. Coria, I. M. Irurzun, E. E. Mola, Chemical Physics Letters 660 123-126 (2016).
- 10-S. N. Hernández Guiance. Estudio Teórico-Experimental de la Adsorción y Reducción Catalítica de SO₂ sobre Cr_2O_3/Al_2O_3 en Presencia de CH_4 y O_2 a Altas Temperaturas. Tesis Doctoral, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, (2016).
- 11-G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6 15-50 (1996).
- 12- G. Kresse, J. Furthmüller, Phys. Rev. B 54 11169-11186 (1996).
- 13- F. Maldonado, A. Stashans. Surface Science 647 78–83 (2016).
- 14- M. Catti, G. Sandrone, G. Valerio, R. Dovesi, J. Phys. Chem. Solids 57 1735-1741 (1996).
- 15- M.S.M. Barrera, J.F. Sanz, L. Alvarez, J. Odriozola, Phys. Rev. B 58 6057 -6062 (1998).
- 16- J. Cline, A. Rigos, T. Arias, J. Phys. Chem. B 104 6195-6201 (2000).
- 17- X. Wang, J. Smith, Phys. Rev. B 68 201402 (2003).
- 18- A. Rohrbach, J. Hafner, G. Kresse, Phys. Rev. B 70 125426 (2004).
- S. Shi, A. Wysocki, K. Belashchenko, Phys. Rev. B 79 104404 (2009).
- 20- R. Wyckoff in "Crystal Structures", Second Edition Interscience, New York, 1965.
- 21- J. Perdew, A. Zunger, Phys. Rev. B 23 5048-5079 (1981).
- 22- F. Rohr, M. Baüer, H.-J. Freund, J. Mejias, V. Staemmler, S. Müller, L. Hammer, K. Heinz, Surf. Sci. **372** L291-L297 (1997).