SELECTIVIDAD ISOTÓPICA DE LA DISOCIACIÓN MULTIFOTÓNICA INFRARROJA DE SIF₄

ISOTOPIC SELECTIVITY IN THE INFRARED MULTIPLE-PHOTON DISSOCIATION OF SiF₄

A. N. Alcaraz¹, J. Codnia², M. L. Azcárate^{2,3}

1 Dpto. Física, Facultad Ingeniería, UBA Av. Paseo Colón 850 - (C1063ACV) - Buenos Aires - Argentina 2 Centro de Investigaciones en Láseres y Aplicaciones CEILAP (CITEDEF-CONICET) Juan Bautista de La Salle 4397 - (B1603ALO) – Villa Martelli – Prov. Buenos Aires - Argentina 3 Carrera del investigador CONICET *e-mail: aalcaraz@fi.uba.ar, jcodnia@citefa.gov.ar, lazcarate@citefa.gov.ar*

Se estudió la selectividad isotópica de la DMFIR de SiF₄ con distintas líneas de emisión de la banda de 9,4 µm de un láser de CO₂ TEA. Se irradiaron mezclas de SiF₄ e H₂ con la línea 9P(36), cuasiresonante con la frecuencia vibracional del modo v₃ de ²⁸SiF₄, y con líneas corridas hacia el rojo y el azul con respecto de ésta. La fracción disociada por pulso se determinó por espectrometría FTIR siguiendo la desaparición de la molécula precursora, SiF₄, y la aparición del producto, SiF₃H. Los factores de enriquecimiento ^{29,30} α en el reactivo (SiF₄) y ^{29,30} β en el producto (SiF₃H) se determinaron mediante espectrometría de masas.

Palabras Claves: silicio, separación isotópica, láser.

The isotopic selectivity of the IRMPD of SiF₄ following irradiation with different emission lines of the 9.4 µm band of a TEA CO₂ laser has been studied. The 9P(36) line is quasi-resonant with the vibrational frequency of the v₃ mode of ²⁸SiF₄. Mixtures of SiF₄ and H₂ have been irradiated with the rotational lines 9P(32) - 9P(42). The fraction of molecules dissociated per pulse was determined by FTIR spectrometry following the disappearance of the working molecule, SiF₄, and the appearance of the product, SiF₃H. The enrichment factors both in the reactant (SiF₄), ^{29,30} α , and in the product (SiF₃H), ^{29,30} β , have been determined by mass spectrometry.

Key Words: Silicon, isotope separation, laser.

I-INTRODUCCION

Las potenciales aplicaciones comerciales de los diferentes isótopos de silicio han promovido la investigación de diferentes técnicas de separación isotópica por láser de este compuesto. En los últimos años se ha encontrado un aumento de la conductividad térmica de obleas de silicio enriquecidas en ²⁸Si con respecto a aquellas de abundancia natural⁽¹⁻⁴⁾. Esto ha producido un incremento en el interés de la aplicación de materiales isotópicamente puros en la industria de los semiconductores. La utilización de ²⁸Si en la fabricación de dispositivos electrónicos mejoraría notablemente la disipación térmica de los mismos, que es un factor limitante de las potencias y las velocidades de conmutación alcanzables.

La Disociación MultiFotónica InfraRroja (DMFIR) es una técnica de separación isotópica con láser que podría aplicarse con éxito a moléculas que contienen silicio. Para ello se requiere encontrar el compuesto precursor adecuado. La DMFIR con láseres de CO₂ TEA ha sido aplicada a la determinación de la selectividad isotópica de compuestos que contienen silicio utilizando SiF₃Cl⁽⁵⁾, SiF₂H₂⁽⁶⁾, SiF₃C₂H₃⁽⁷⁾ SiF₃C₆H₅⁽⁸⁾, SiF₃CH₃⁽⁸⁾, SiF₃CH₂Cl⁽⁹⁾, SiF₃C₂H₃Cl₂^(10,11) y Si₂F₆⁽¹²⁻¹⁹⁾ como moléculas de trabajo.

Los resultados más promisorios han sido alcanzados con Si_2F_6 ^(12,13). Sin embargo, si bien este compuesto se descompone con un alto rendimiento a muy baja fluencia, no es evidente que sea la mejor molécula precursora para la separación isotópica de silicio por DMFIR. Dicha molécula contiene dos átomos de silicio y, en consecuencia, puede tener diferentes mezclas isotópicas tales como ²⁸SiF₃ – ²⁹⁽³⁰⁾SiF₃, lo cual disminuye la eficiencia de la DMFIR para ²⁹Si y ³⁰Si. Por otra parte, Si₂F₆ es bastante inestable y, por lo tanto, su utilización a escala industrial podría ser de difícil implementación⁽¹⁵⁾.

Las moléculas investigadas que contienen un solo átomo de silicio⁽⁵⁻¹¹⁾ no se producen de manera industrial, y esto podría limitar su utilización como moléculas precursoras en la separación isotópica del silicio a gran escala. El tetrafluoruro de silicio (SiF₄) es ampliamente utilizado en la industria de los semiconductores y ha sido poco estudiado como posible molécula precursora en el proceso de enriquecimiento de Si mediante la técnica DMFIR⁽²⁰⁾. La composición de SiF₄ está determinada por la abundancia natural de los tres isótopos del silicio: ²⁸Si (92,23%), ²⁹Si (4,67%) y ³⁰Si (3,10%). Las frecuencias vibracionales del modo v₃ de SiF₄ correspondientes a las especies isotópicas ²⁸SiF₄, ²⁹SiF₄ y ³⁰SiF₄, 1031,8, 1022,9 y 1014,4 cm^{-1 (21)}, respectivamente, son cuasi-resonantes con las líneas de emisión de la banda de 9,4 µm del láser de CO₂.

En un trabajo anterior se determinó que en la disociación multifotónica infrarroja (DMFIR) de SiF₄ se generan los radicales SiF3 y F, los cuales reaccionan entre sí regenerando tetrafluoruro de silicio⁽²²⁾. Se comprobó además que la adición de H2 como gas aceptor inhibe la ocurrencia de dicha reacción de recombinación al capturar los radicales SiF₃ y F. El principal producto obtenido en la DMFIR de SiF₄ en exceso de H₂ fue SiF₃H⁽²²⁾. En el presente trabajo se estudió la selectividad isotópica de la DMFIR de SiF4 con distintas líneas de emisión de la banda de 9,4 µm de un láser de CO₂ TEA. El espectro de DMFIR de SiF₄ se determinó por espectrometría FTIR y los factores de enriquecimiento en el reactivo (SiF₄) y en el producto (SiF_3H) , ^{29,30} α y ^{29,30} β , respectivamente, se determinaron mediante espectrometría de masas.

II- PARTE EXPERIMENTAL

Se utilizó un láser de CO2 TEA multimodo construido en la División Fotofísica Láser en Gases del CEILAP (1,6 J de energía promedio, 1 Hz de frecuencia de repetición, 100 ns duración del pulso) para llevar a cabo la DMFIR de SiF₄. La celda de irradiación era de vidrio Pyrex, con simetría cilíndrica, (15 cm de largo y 3 cm de diámetro), con dedo frío y ventanas de KCl. La radiación se enfocó en el centro de la misma con una lente de Ge de 10 cm de distancia focal. Las longitudes de onda de irradiación fueron: 1035,46 cm⁻¹ 9P(32), 1033,48 cm⁻¹ 9P(34), 1031,46 cm⁻¹ 9P(36), 1029,43 cm⁻¹ ¹ 9P(38) y 1025,28 cm⁻¹ 9P(42). Se irradiaron muestras de 0,45 Torr de SiF₄ (Matheson 99,99%) en presencia de 1 Torr de H₂ (Union Carbide 99,99%) de manera de inhibir la reacción de recombinación entre los radicales generados en la DMFIR. El número de pulsos varió entre 3000 y 4500 para obtener una disociación de aproximadamente el 20 %. Las presiones parciales tanto de SiF₄ como del producto mayoritario, SiF₃H, antes y después de la irradiación, se determinaron con un espectrómetro FTIR Perkin Elmer System 2000. La determinación de la composición isotópica del reactivo SiF₄ y del producto SiF₃H se realizó con un espectrómetro de masas cuadrupolar, Extranuclear, EMBA II. La composición isotópica de SiF4 en muestras sin irradiar e irradiadas fue determinada, mediante el análisis de las intensidades de los picos con relación $m/e = 85, 86 \text{ y} 87 (I_{85}, I_{86}, I_{87})$ correspondientes a los iones ${}^{28}\text{SiF}_3^+$, ${}^{29}\text{SiF}_3^+$ y ${}^{30}\text{SiF}_3^+$, respectivamente ${}^{(23)}$. La composición isotópica de SiF₃H fue determinada mediante el análisis de las intensidades de los picos con relación m/e = 67, 68, y 69 correspondientes a los iones ${}^{28}\text{SiF}_2\text{H}^+$, ${}^{29}\text{SiF}_2\text{H}^+$ y ${}^{30}\text{SiF}_2\text{H}^+$, respectivamente⁽²⁴⁾. El espectro de masas de SiF₄ también presenta picos en

 $m/e = 66, 67 \text{ y} 68 (I_{66}, I_{67}, I_{68})$, correspondientes a los iones ²⁸SiF₂⁺, ²⁹SiF₂⁺ y ²⁹SiF₂⁺, pero sus intensidades son menores que el 0,5 % de la intensidad del pico correspondiente al ión ²⁸SiF₃⁺⁽²³⁾. Esto llevó a despreciar la contribución de SiF₄ a las intensidades de estos picos.

II- RESULTADOS Y DISCUSIÓN

En la Figura 1 se muestra en línea gris el espectro infrarrojo (IR) de absorción lineal de una muestra sin irradiar que contiene 0,45 Torr de SiF₄ de abundancia isotópica natural y 1 Torr de H₂. En dicho espectro se observa la banda de máxima absorción de ²⁸SiF₄ centrada en 1031 cm⁻¹ (modo v₃)^(21,25). Los picos correspondientes a las especies isotópicas ²⁹SiF₄ (1022,9 cm⁻¹) y ³⁰SiF₄ (1014,4 cm⁻¹) se indican con flechas. En línea negra se muestra el espectro de la muestra irradiada con 3000 pulsos de la línea 9P(34) (1033,48 cm⁻¹) del láser de CO₂. En el mismo se observa la presencia de los picos de las bandas de absorción infrarroja correspondientes a los modos v₂ (859 cm⁻¹), v₄ (995 y 1005 cm⁻¹) y v₅ (845cm⁻¹) del producto SiF₃H^(26,27).

Figura 1. Espectro de absorción lineal de una mezcla de 0,45 Torr de SiF₄ con 1 Torr de H₂ sin irradiar e irradiada con 3000 pulsos de la línea 9P(34) 1033,48 cm⁻¹ de un láser CO₂ TEA.

Un parámetro que caracteriza la DMFIR es la fracción de SiF_4 disociada por pulso en el volumen de la celda:

$$\gamma = 1 - F_R^{\frac{1}{n}} \tag{1}$$

donde F_R

$$F_{\rm R} = \frac{[{\rm Si}F_4]_n}{[{\rm Si}F_4]_0} \tag{2}$$

es la fracción de SiF₄ remanente en la celda luego de *n* pulsos. Este parámetro depende de la especie isotópica y de la longitud de onda de irradiación^(28,29).

El análisis de los espectros infrarrojos, registrados cada 500 pulsos en cada experiencia, permitió determinar la evolución de las cantidades de reactivo disociado y de SiF₃H generado por pulso en la celda. Dado que la contribución de las especies isotópicas minoritarias (29 SiF₄ y 30 SiF₄) al espectro de absorción IR de SiF₄ en la región entre 1000 y 1040 cm⁻¹ es pequeña (5 % y 3 %, respectivamente) y, que sus bandas de absorción IR se solapan con las de la especie isotópica mayoritaria (Figura 1), las presiones parciales de dichas especies isotópicas no fueron determinadas. La presión parcial de ²⁸SiF₄ se obtuvo a partir de la banda de absorción en 1031 cm⁻¹. Por ende, la fracción remanente de SiF₄ determinada mediante espectrometría infrarroja, es la cantidad remanente de la especie isotópica mayoritaria ²⁸SiF₄. En la Figura 2 se muestra la fracción remanente de SiF₄, en función del número de pulsos de una mezcla de 0,45 Torr de SiF₄ con 1 Torr de H₂, irradiada con la línea 9P(34) 1033,48 cm⁻¹.

Figura 2. Fracción remanente de SiF₄, F_R, en función del número de pulsos de una mezcla de 0,45 Torr de SiF₄ con 1 Torr de H₂, irradiada con la línea 9P(34) 1033,48 cm⁻¹.

En la Figura 3 se observa la cantidad de producto SiF₃H generado (Δ [SiF₃H]) en función de la cantidad de SiF₄ consumido (Δ [SiF₄]) en la DMFIR para las diferentes longitudes de onda de irradiación utilizadas. Se observa una muy buena correlación lineal con un coeficiente R² = 0,988. Esto permite afirmar que, dentro del error experimental, todo el SiF₄ disociado se convierte en el producto SiF₃H y que los mecanismos involucrados en la disociación no se modifican al variar la longitud de onda de irradiación.

Figura 3. Cantidad de producto SiF_3H generado en función de la cantidad de SiF_4 consumida en la DMFIR para las diferentes longitudes de onda de irradiación utilizadas.

La Figura 4 muestra la fracción disociada por pulso (γ) de una mezcla de 0,45 Torr de SiF₄ y 1 Torr de H₂ en

función de la longitud de onda (espectro de DMFIR). Se incluye también el espectro de absorción lineal de SiF_4 (en línea continua) para su comparación. Se observa un aumento sistemático de la DMFIR a medida que disminuye la frecuencia de emisión del láser.

Figura 4. Fracción disociada por pulso de $SiF_4(\gamma)$ en función de la longitud de onda. Valores normalizados a una energía de 1,6 J.

En la Figura 5 se muestran los espectros de masas de una mezcla de 0,45 Torr de SiF₄ y 1 Torr de H₂ sin irradiar y de otra irradiada con 3000 pulsos con la línea 9P(34) 1033,48 cm⁻¹. En este espectro se observa una disminución de las intensidades de las masas 85, 86 y 87 como resultado de la disociación del reactivo SiF₄. Paralelamente, se observa un aumento de las intensidades de las masas 67, 68 y 69 como consecuencia de la aparición del producto SiF₃H.

Figura 5. Espectros de masas de una mezcla de 0,45 Torr de SiF₄ y 1 Torr de H₂ sin irradiar y de otra irradiada con la línea 9P(34) 1033,48 cm⁻¹.

La fracción disociada por pulso de cada una de las especies isotópicas, γ_s (s = 28, 29, 30), puede depender, en principio, de la longitud de onda de irradiación^(28,29). Luego de *n* pulsos, la cantidad remanente en la celda de una dada especie isotópica *s* del reactivo, [^sSiF₄]_n, está dada por la siguiente expresión:

$$[{}^{s}\mathrm{SiF}_{4}]_{n} = (1 - \gamma_{s})^{n} [{}^{s}\mathrm{SiF}_{4}]_{0}$$
(3)

donde $[^{s}SiF_{4}]_{0}$ denota la cantidad de dicha especie isotópica antes de irradiar. A su vez, luego de *n* pulsos,

la cantidad en la celda de una dada especie isotópica s del producto, [${}^{s}SiF_{3}H$]_n, queda expresada como:

$$[{}^{s}\operatorname{SiF}_{3}\operatorname{H}]_{n} = \left(1 - (1 - \gamma_{s})^{n}\right)[{}^{s}\operatorname{SiF}_{4}]_{0}$$
(4)

El factor de enriquecimiento isotópico tanto en el reactivo $^{29,30}\alpha$ como en el producto $^{29,30}\beta$, se define como:

$$^{29,30} \alpha = ^{29,30} \beta = \frac{\gamma_{28}}{\gamma_{29,30}}$$
(5)

Considerando que la intensidad de cada pico del espectro de masas es proporcional a la presión parcial del compuesto asociado, las relaciones entre picos de distintas especies isotópicas permiten medir la selectividad isotópica tanto en el reactivo como en el producto. Utilizando las expresiones (3) y (4), con las definiciones

$${}^{29,30}X = \frac{[{}^{28}\text{SiF}_4]}{[{}^{29,30}\text{SiF}_4]} = \frac{I_{85}}{I_{86,87}}$$
(6)

$${}^{29,30}Y = \frac{[{}^{28}\text{SiF}_3\text{H}]}{[{}^{29,30}\text{SiF}_3\text{H}]} = \frac{I_{67}}{I_{68,69}}$$
(7)

los factores α y β resultan:

$$^{29,30}\alpha = \frac{\gamma_{28}}{1 - (1 - \gamma_{28}) \left(\frac{29,30}{29,30} X_0}{\frac{29,30}{29,30} X_n}\right)^{\frac{1}{n}}}$$

$$^{29,30}\beta = \frac{29,30}{29,30} \frac{Y_n}{X_0}$$
(9)

donde los subíndices 0 y *n* indican la muestra sin irradiar e irradiada luego de *n* pulsos, respectivamente. De esta manera, los factores de enriquecimiento se determinan mediante relaciones entre intensidades de picos del espectro de masas y el parámetro γ_{28} obtenido mediante espectrometría infrarroja.

Las Figuras 6 y 7 muestran los factores de enriquecimiento α y β , respectivamente, obtenidos para las distintas líneas de emisión del láser. En ambas figuras se superpuso, en línea continua, el espectro de absorción lineal.

Figura 6. Enriquecimiento isotópico α en el reactivo SiF₄ en función de la longitud de onda de irradiación.

Figura 7. Enriquecimiento isotópico β en el producto SiF₃H en función de la longitud de onda de irradiación

Como lo indica la expresión (5), los factores de enriquecimiento determinados en el reactivo y en el producto deberían ser idénticos. Las Figuras 6 y 7 muestran que dichos factores de enriquecimiento presentan un comportamiento cualitativamente similar: el del isótopo 30 es mayor que el del 29 y ambos factores disminuyen al disminuir el número de onda. Estos resultados ponen de manifiesto que al disminuir el número de onda aumenta el solapamiento entre la línea de emisión del láser y las bandas de absorción de las especies minoritarias. En consecuencia, aumenta $\gamma_{29,30}$, siendo este efecto más notable en el isótopo más pesado.

IV- CONCLUSIONES

Se obtuvo enriquecimiento isotópico en 28 Si mediante la técnica de DMFIR con un láser CO₂ TEA utilizando como molécula precursora SiF₄.

Se encontró que el espectro de Disociación Multifotónica InfraRroja (DMFIR) de ²⁸SiF₄ aumenta al disminuir el número de onda. Los resultados obtenidos permiten inferir que el máximo de la DMFIR presenta un corrimiento hacia el rojo > 4 cm⁻¹ respecto del máximo del espectro de absorción lineal. Este efecto producido por la anarmonicidad de los niveles vibracionales es consistente con el obtenido en un trabajo anterior para la Absorción MultiFotónica InfraRroja (AMFIR)⁽³⁰⁾.

Se determinaron los factores de enriquecimiento isotópico en el reactivo SiF₄ y en el producto SiF₃H, $(^{29,30}\alpha)$ y $(^{29,30}\beta)$, respectivamente, con distintas líneas de emisión de la banda de 9,4 µm de un láser de CO₂ TEA. Ambos factores disminuyen al disminuir el número de onda como consecuencia del aumento del solapamiento entre la línea de emisión del láser y las bandas de absorción de las especies isotópicas minoritarias. Los valores máximos se obtuvieron para la línea de emisión 9P(32) la cual presenta el menor solapamiento con las bandas de absorción de las especies minoritarias.

El valor máximo de $^{29}\alpha$ (2,8) supera 2,5 veces al obtenido por otros autores en un único trabajo anterior de DMFIR de SiF₄⁽²⁰⁾. En experiencias previas al presente trabajo se realizó una optimización de la

DMFIR variando tanto las presiones del reactivo, SiF₄, y del gas aceptor, H₂, como de la longitud de onda de irradiación⁽³¹⁾. Esto redundó en un aumento sustancial del valor del coeficiente de enriquecimiento.

Referencias

- Capinski W.S., Maris H. J., Bauser E., Silier I., Asen-Palmer M., Ruf T., Cardona M., Gmelin E., Appl. Phys. Lett. 71, 2109-2111 (1997)
- Ruf T., Henn R.W., Asen-Palmer M., Gmelin E., Cardona M., Pohl H.J., Devyatych G.G., Sennikov P.G., Sol. St. Comm., 115, 243-247 (2000)
- Kremer R.K., Graf K., Cardona M., Devyatykh G.G., Gusev A.V, Gibin A.M., Inyushkin A.V., Taldenkov A.N., Pohl H.-J., Sol. St. Comm., 131, 499 (2000)
- Ruf T., Henn R.W., Asen-Palmer M., Gmelin E., Cardona M., Pohl H.J., Devyatych G.G., Sennikov P.G., Sol. St. Comm., **127**, 257 (2003)
- Apatin V.M., Laptev V.B., Ryabov E.A., J. Quantum Electron., 33, 894-896 (2003)
- Gorelik S.R., Chesnokov E.N., Kuibida L.V., Akberdin R.R., Petrov A.K., Appl. Phys. B, 78, 119-125 (2004)
- Koshlyakov P.V., Gorelik S.R., Chesnokov E.N., Vorobiev A.V., Petrov A.K., Appl. Phys. B, 84, 529-536 (2006)
- Baranov V.Y., Dyad'kin A.P., Kuz'menko V.A., J. Quantum Electron., 20, 450-452 (1990)
- Koshlyakov P.V., Dementyev P.S., Gorelik S.R., Chesnokov E.N., Petrov A.K., Photochem. Photobiol, 85, 901-908 (2009)
- Koshlyakov P.V., Vorobiev A.V., Gorelik S.R., Chesnokov E.N., Petrov A.K., Mendeleev Commun., 18, 18-20 (2008)
- Koshlyakov P.V., Dementyev P.S., Gorelik S.R., Chesnokov E.N., Petrov A.K., Appl. Phys. B, DOI 10.1007/s00340-009-3596-7 (2009)
- Kamioka M., Arai S., Ishikawa Y., Isomura S., Takamiya N., Chem. Phys. Lett. **119**, 357-360 (1985)
- Kamioka M., Arai S., Ishikawa Y., Kaetsu H., Isomura S., Arai S., J. Phys. Chem., 90 n 22, 5727-5730 (1986)

- Arai S., Kaetsu H., Isomura S., Appl. Phys. B 53, 199-202 (1991)
- Noda T., Suzuki H., Araki H., Okada M., J. Nucl. Mat., 233-237, 1496-1499 (1996)
- Suzuki H., Araki H., Noda T., J. Jpn. Inst. Met., 61, 145-152 (1997)
- 17. Lyman J.L., Newnam B.E, Noda T., Suzuki H., J. Phys. Chem. A, **103**, 4227-4232 (1999)
- Yokoyama A., Ohba H., Shibata T, Kawanishi S., Sugimoto S., Ishii T., Ohya A., Miyamoto Y., Isomura S., Arai S., J. Nucl. Sci. Technol, **39**, 457-462 (2002)
- Yokoyama A., Ohba H., Hashimoto M., Katsumata K., Akagi H., Ishii T., Ohya A., Arai S., Appl. Phys. B, 79, 883-889 (2004)
- Lyman J.L., Rockwood S.D., J. Appl. Phys., 47, 595-601 (1976)
- Heicklen J. and Knight V., Spectrochim. Acta, 20, 295-298 (1964)
- Alcaraz A.N., Codnia J., Azcárate M.L., J. Photochem. Photobiol. A: Chemistry, 165, 209-214 (2004)
- 23. http://www.nist.gov
- 24. Sharp K., Margrave J.L., Inorg. Chem., 8, 2655-2658 (1969)
- 25. Shimanouchi, T., Tables of Molecular Vibrational Frequencies Consolidated Volume II (1972)
- Newman, C., Polo S.R., Wilson M.K., Spectrochim. Acta, 10, 793-799 (1959)
- Bürger H., Biedermann S., Ruoff A., Spectrochim. Acta, 27 A, 1687-1702 (1971)
- Letokhov, V.S. Non linear Laser Chemistry, Multiple-Photon Excitation, Springer Ser. Chem. Phys. 22, (Springer-Verlag, Berlin, Heidelberg, New York 1983)
- Bagratashvili, N., V.S. Letokhov, A.A. Makarov, E.A. Ryabov. Multiple-Photon Laser Photophysics and Photochemistry. Harwood Academic Publishers. London, Paris, New York (1985)
- Alcaraz A. N., Freytes V. M, Tarulla R., Codnia J., Azcárate M. L., Anales AFA vol. 19, 76-78 (2008)
- 31. Trabajo ha ser publicado.