EFECTO DE LA CONCENTRACIÓN DEL DOPANTE SOBRE LA ESTRUCTURA Y LA MORFOLOGÍA EN PELÍCULAS DELGADAS DE Y₂O₃ - HfO₂ Y CaO - HfO₂

Y₂O₃ - HfO₂ AND CaO - HfO₂ THIN FILMS: EFFECT OF DOPANT CONCENTRATION ON THE STRUCTURE AND MORPHOLOGY

S.A. Barolin¹, M.L. Giannone¹, M.A. Balbi¹, M. V. Roldán¹ and O.A. de Sanctis^{*}

Lab. Materiales Cerámicos, FCEIyA - IFIR, Universidad Nacional de Rosario, Argentina Av. Pellegrini 250 - (2000) – Rosario - Santa Fe - Argentina *e-mail: oski@fceia.unr.edu.ar*

Se depositaron películas delgadas de $(Y_2O_3)x$ -Hf_{(1-2x})O_{2-x} y (CaO)y-Hf_(1-y)O_{2-y} (x: 0.025, 0.1 y 0.12; y:0.06, 0.14 y 0.2) sobre sustratos de Al₂O₃ mediante la técnica de Dip-coating a partir de soluciones alcohólicas de organometálicos utilizando 3-hidroxi-2-butanona (Acetoín) como agente quelante. El quemado de los residuos orgánicos se realizó a 500 °C bajo atmósfera normal. Las películas fueron tratadas térmicamente a intervalos de temperatura creciente hasta una temperatura máxima de 1250°C. La morfología y el tamaño de grano de las películas se estudiaron mediante Microscopía de Fuerzas Atómicas (AFM) a temperatura ambiente. La evolución térmica de la estructura cristalina se monitoreó por ex-situ DRX en configuración φ -20 con haz rasante y mediante análisis térmico DTG de polvos equivalentes. Concentraciones crecientes de ambos dopantes incrementan la temperatura de estabilidad de la fase metaestable cúbica, sin embargo para 1250 °C, sólo la película (Y₂O₃)x-Hf_(1-2x)O_{2-x} no exhibe la presencia de fase monoclínica.

Palabras Claves: HfO2-Y2O3, HfO2-CaO, películas, evolución de fases

 $(Y_2O_3)x$ -Hf_(1-2x)O_{2-x} y (CaO)y-Hf_(1-y)O_{2-y} (x: 0.025, 0.1 y 0.12; y:0.06, 0.14 y 0.2) coatings were synthesized by Chemical Solution Deposition (CSD) from alcoholic solution using 3-hidroxi-2-butanone (Acetoín) as chelant agent. Burning of organic waste was carried out at 500 ° C under normal atmosphere. Films were deposited onto alumina substrates by Dip Coating technique. The films were thermally treated at intervals of temperature rising to a maximum temperature of 1250 ° C. By means Atomic Force Microscopy (AFM) and Glazing Incidence X-ray Diffraction (φ -2 θ configuration) morphology and phases evolution were studied. Increasing concentrations of both dopants increase temperature of the phase stability of cubic metaestable, but for 1250 °C, only the film (Y₂O₃) x-Hf_{(1-2x}) O_{2-x} did not exhibit the presence of monoclinic phase.

Key Word: HfO₂-Y₂O₃, HfO₂-CaO, films, phases evolution

I. INTRODUCCIÓN

Las soluciones sólidas a base de HfO_2 han tomado en los últimos tiempos una gran importancia tecnológica, no sólo por sus propiedades de electrolitos sólidos para aplicaciones en dispositivos de celdas de combustibles y de sensores de gases, sino también por su utilización como foto-detectores de partículas de altas energías (centelleo)¹. Asimismo, debido al proceso de miniaturización de los dispositivos, la demanda de los materiales funcionales en dimensiones restringidas, tales como películas delgadas, es imperativa. Las propiedades requeridas de las soluciones sólidas a base de HfO_2 , para cualquiera de sus aplicaciones, son dependientes de la estructura de los mismos y de la estabilidad de las fases metaestables cúbica o tetragonal.

En el presente trabajo se estudia el efecto de dopantes tales como óxidos de Calcio y de Itrio, y de las concentraciones de los mismos sobre la evolución térmica y la estabilidad de las fases en películas delgadas de HfO₂. Asimismo, se analiza la cinética de crecimiento y se evalúan las energías de activación a partir de las mediciones de crecimiento de grano con la temperatura.

^{*} Autor a quién debe dirigirse la correspondencia.

II. MÉTODO EXPERIMENTAL

Se prepararon películas mediante la técnica de Dip Coating a partir de soluciones 0,25 M de Hafniun nbutoxide/Acetoin (relación molar 0,58) en 1–Butanol. Se utilizó como solvente alcohol butílico 1–Butanol) (99.4% Cicarelli); y como reactivos: Acetato de Calcio (CaAc2 99.99 % 11186-22 ALFA), Hafnium n – Butoxide (Hf(OC4H9)4 95 % en butanol; AKH325 Gelest) y quelante: Acetoin (3-hydroxy-2-butanone, A1,795-1, Aldrich). Las composiciones estudiadas fueron:

 $Hf_{1-2x} Y_{2x} O_{2-x} y Hf_{1-y} Ca_y O_{2-y} con X = 0,025; 0,10; 0,12$ e Y = 0,06; 0,14; 0,20. Las películas fueron tratadas térmicamente a 500°C (atmósfera normal) por 1 hora para el quemado de los residuos orgánicos.

El estudio de la evolución térmica de la estructura cristalina se realizó ex situ sobre muestras tratadas a temperaturas entre 650°C y los 1250 °C durante 30 minutos, mediante la técnica GI-XRD, en configuración $\varphi - 2\theta$ con $\varphi = 1^{\circ}$ y paso de $\Delta\theta = 0,02^{\circ}$, con 1 segundo de permanencia en cada paso, en intervalo $2\theta = 25^{\circ} - 85^{\circ}$. El equipo utilizado fue un Philips X Pert Pro, línea CuK_a (1,5405 Å) con haz incidente paralelo (lente convergente) y haz reflejado post colimador paralelo y monocromador α_1 .

La morfología y el tamaño de grano se estudiaron mediante microscopía de fuerza atómica (AFM) de Nanotec Electrónica, a temperatura ambiente. El tamaño de grano fue calculado través de la fórmula de Scherrer, basada en el ensanchamiento de los picos de difracción de rayos X.

III. RESULTADOS

i) Evolución térmica de las fases.

Sistema Y₂O₃ –HfO₂

En la figura 1 se muestran los difractogramas de la película de $Hf_{0,76}$ $Y_{0,24}$ $O_{1,88}$ (x = 0,12), para cada temperatura de estudio,

Fig. 1: Difractogramas del sistema de Y_2O_3 –HfC para x=12% indicándose los picos (111) y (220) de la fase cúbica.

Del análisis de los difractogramas se obtiene que para la concentración de itria de x = 0,025 (espectros no mostrados aquí) hay presencia de fase monoclínica en todo el rango de temperaturas, siendo ésta la fase dominante a 1250°C. Para concentraciones mayores Y₂O₃ la fase dominante es la cúbica y sólo se observa un 10 % y 1% de fase monoclínica a 1250°C en la muestras con 10% y 12 % de Y₂O₃, respectivamente.

Tabla 1: Fracción de fases (f)								
Temp [ºC]	Hf _{0,95} Y _{0,05} O _{1,975} [%]		Hf _{0,95} Y _{0,05} O _{1,975} [%]		Hf _{0,95} Y _{0,05} O _{1,975} [%]			
	cúbica	monoc	cúbica	monoc	cúbica	monoc		
500	84,5	15,5	100	0	100	0		
650	65,5	35,5	100	0	100	0		
800	58,2	41,8	100	0	100	0		
900	55,8	44,2	100	0	100	0		
1000	34,7	65,3	100	0	100	0		
1100	11.4	88,6	100	0	100	0		
1250	0	100	33	66	>99	<1		

Tabla 1: Fracción de fases para el sistema Y_2O_3 – HfO_2

Sistema CaO – HfO₂

En la figura 2 se exhiben los resultados de XRD obtenidos para la muestra Hf $_{0,80}$ Ca $_{0,20}$ O $_{1,8}$ a las distintas temperaturas de estudio.

Fig. 2: Difractogramas del sistema CaO – HfO₂

En la muestra con menor concentración, (x = 0,06), ya a los 650°C, aunque la fase mayoritaria es cúbica, aparecen trazas de estructura monoclínica, que deviene en la fase mayoritaria entre los 900°C y 1000°C. En las otras concentraciones este cambio se produce entre los 1100°C y los 1250°C, prevaleciendo la fase cúbica para las temperaturas inferiores a 1100°C. (*ver Tabla 2*).

Tabla 2: Fracción de fases (f)								
Temp [ºC]	Hf _{0,94} Ca _{0,06} O _{1,94} [%]		Hf _{0,86} Ca _{0,14} O _{1,86} [%]		Hf _{0,80} Ca _{0,20} O _{1,80} [%]			
	cúbica	monoc	cúbica	monoc	cúbica	monoc		
500	100	0	100	0	100	0		
650	94	6	100	0	100	0		
800	79	21	100	0	100	0		
900	64	36	100	0	100	0		
1000	39	61	>99	<1	100	0		
1100	36	64	36	64	79	21		
1250	0	100	0	100	25	75		

Tabla 2: Fracción de fases para el sistema CaO $-HfO_2$

En ambos sistemas, la incorporación de óxidos aliovalentes genera vacancias de Oxígeno de acuerdo a

$$xY_{2}O_{3} \xrightarrow{HfO_{2}} 2xY''_{Hf} + 3O_{o} + xV''_{o}$$
$$xCaO \xrightarrow{HfO_{2}} xCa''_{Hf} + O_{o} + xV''_{o}$$

El aumento de la concentración de óxido dopante incrementa la concentración de vacancias de Oxígeno, que permite retener, a bajas temperaturas, las fases cúbica y tetragonal como fases metaestables.

Tabla 3: Tamaño de grano (s) en función de la temperatura							
Temperatura [ºC]	Hf _{0,80} Ca [n	a _{0,20} O _{1,80} m]	Hf _{0,76} Y _{0,24} O _{1,88} [nm]				
	cúbica	monoc.	cúbica	monoc.			
500	-	-	4,6	-			
650	42	-	9,8	-			
800	57	-	12,7	-			
900	69	-	18	-			
1000	56	-	26,1	-			
1100	64	38	71,5	-			
1250	81	74	110	-			

Tabla 3: Tamaños de grano de las muestras $Hf_{0,80} Ca_{0,20} O_{1,8}$ y $Hf_{0,76} Y_{0,24} O_{1,88}$

ii) Cristalización y crecimiento de grano

El análisis de la evolución del tamaño de grano *s* con la temperatura (tabla 3) permite estimar la energía de activación de la cristalización y la recristalización. Esta energía esta representada en la pendiente de la gráfica ln(s) versus $1/k_BT$, correspondiente a la muestra con 12% de Y₂O₃ (figura 2) y 20% de CaO (figura 3).

Fig. 3: Energías de activación para la cristalización de las muestras con 20% de calcia y 12% de itria.

El proceso de cristalización en la película 12 % de Y_2O_3 -HfO₂ presenta una primera cristalización emergente de la fase amorfa con una $E_a = 0.173$ eV y un proceso de recristalización (crecimiento de grano)

 $E_a = 0.376 \text{ eV}$, cualitativamente similar a lo que ocurre en los polvos derivados de la misma solución precursora (no mostrado aquí), lo que indica una nucleación homogénea.

En cambio, la película 20 % CaO – HfO₂ sólo presenta la primera cristalización con una muy baja energía de activación, $E_a = 0.06$ eV, indicativo de una nucleación heterogénea.

Fig. 5: Fotografías AFM de las muestras $Hf_{0,80}Ca_{0,20}O_{1,8}$ $y Hf_{0,76}Y_{0,24}O_{1,88}$

Estos resultados concordarían con la topografía analizada por AFM donde se observa una morfología probablemente debida a granos columnares para la película con 20 % de CaO mientras que la microestructura de la de 12 % de Y_2O_3 corresponde más a la de una película policristalina.

IV. CONCLUSIONES

Se prepararon películas de HfO_2 dopadas con Y_2O_3 y CaO mediante la técnica de Dip-coating a partir soluciones de organometálicos usando Acetoin como modificador químico. La metaestabilidad de la fase cúbica depende de la concentración de vacancias y de la temperatura a la que es sometido el material. Si bien en ambos sistemas la temperatura de metaestabilidad crece con la concentración de óxido dopante, sólo las películas con 12 % de Y₂O₃ mantienen la fase cúbica hasta 1250°C.

Mediante la evolución térmica del tamaño se determinó que la nucleación predominante en la película con 12 % de Y_2O_3 es la homogénea, mientras que la de 20 % de CaO es heterogénea.

REFERENCIAS

1. Kirm M., Aarik J., Jürgens M., Sildos I., *Nuclear Instruments and Methods in Physics Research* A 537 (2005) 251-255.

2. Yashima M., Takahashi H., Ohtake K., Hirose T., Kakihana M, Arashi H., Ikuma Y., Suzuki, Y, Yoshimura M., *Journal of Physics and Chemistry of Solids*, 57 (1996) 289-295.