INFLUENCIA DEL CO₂ EN LA RESPUESTA DE FASE DE UN SISTEMA FOTOACÚSTICO PARA DETECCIÓN DE MUESTRAS MULTICOMPONENTES

THE INFLUENCE OF CO₂ ON THE PHASE RESPONSE IN A PHOTOACOUSTIC SYSTEM FOR DETECTION OF MULTICOMPONENT SAMPLES

N. M. Zajarevich¹, A. L. Peuriot¹, V. B. Slezak¹, G. D. Santiago², M. G. González²

Centro de Investigaciones en Láseres y Aplicaciones (CEILAP), Juan Bautista de La Salle 4397 (1603), Villa Martelli, Bs. As.
 Laboratorio de Láser, Facultad de Ingeniería, Universidad de Buenos Aires, Paseo Colón 850 (1063), Capital Federal
 e-mail: nzajarevich@citefa.gov.ar

Se mejoró un sistema fotoacústico resonante en base a láser de CO_2 para la medición de concentración de gases relacionados con procesos biológicos, particularmente con la maduración de la fruta. Las frutas generan principalmente: etileno, etanol, H₂O y CO₂. La medición de fase en este tipo de mezclas multicomponentes brinda información muy útil, debido a que la señal acústica producida por el CO₂ presenta un defasaje de aproximadamente 165° respecto de la excitación. La rápida transferencia de energía entre los niveles vibracionales del CO₂ (v₃) y el N₂ (resonancia de Fermi) produce dicho defasaje. La fuente del sistema es un láser de CO₂ sintonizable en las bandas de 9 y 10 µm. El haz modulado por un obturador mecánico de frecuencia variable atraviesa una celda longitudinal, con filtros de cuarto de onda en los extremos y un micrófono en el centro. La señal proveniente de las muestras al barrer alrededor del pico de resonancia correspondiente al segundo modo longitudinal es procesada por un amplificador lock-in y transferida a una PC. Para la medición de fase se introdujo una celda de referencia al sistema cargada con una alta concentración de etileno en N₂, el cual sigue la fase de la excitación. Finalmente se comprobó el modelo de ecuaciones de tasa poblacional, que describe la relación entre amplitud y fase de la señal fotoacústica y la concentración de los gases, donde el término que contiene la concentración de CO₂ depende de la relación entre la energía del estado vibracional del N₂ y la del fotón del láser.

Palabras clave: fotoacústico, láser de CO₂, etileno, multicomponentes, maduración de fruta.

A resonant CO_2 laser-based photoacoustic system for measurement of gas traces related to biological processes, particularly fruit ripening, has been improved. Fruit mainly emit ethylene, ethanol, water and carbon dioxide. The phase determination of signals coming from this type of multicomponent samples is very important because the acoustic signal produced by CO_2 dephases circa 165° with respect to the excitation. This is due to a fast energy transfer process between the vibrational levels of CO_2 (v₃) and N₂ (Fermi resonance). The system is based on a 9 to 10 µm tunable CO_2 laser. The beam, chopped at variable frequency, goes through a longitudinal cell with quarter-wavelength filters at its ends and a microphone at the center. The signal from the samples at different frequencies around the resonance peak, corresponding to the second longitudinal mode, is processed by a lock-in amplifier and further transferred to a PC. A reference cell filled with a high concentration of ethylene in N₂, which photoacoustic signal is in phase with the laser excitation, is used for the phase measurement. Finally a rate equations-based model, which relates the amplitude and phase of the signal to the gases concentration, is successfully tested. In this model the term that refers to CO_2 depends on the ratio of the N₂ vibrational to the laser photon energy.

Keywords: photoacoustic, CO₂ laser, ethylene, multicomponent, fruit ripening.

I. INTRODUCCIÓN

La técnica fotoacústica (FA) basada en láseres de CO_2 es una herramienta muy útil para detección de trazas gaseosas, ya que muchas moléculas poliatómicas presentan bandas de absorción en el rango de longitudes de onda en el que estos láseres emiten. Además, al ser una fuente de luz sintonizable, el láser de CO_2 permite analizar mezclas multicomponentes. En la actualidad, una aplicación de gran interés de esta técnica es la detección de etileno (C_2H_4), que es la única hormona gaseosa en vegetales, relacionada con procesos de crecimiento y maduración de los mismos¹.

El C_2H_4 es emitido al mismo tiempo que otras sustancias, siendo las principales: etanol, H_2O , CO_2 . Muchas de estas especies también absorben la radiación del láser de CO_2 , siendo entonces la señal acústica generada a partir de la excitación de todas las especies absorbentes en la longitud de onda de sintonía del láser. La cantidad de líneas de emisión del láser en las que se deben realizar las mediciones para determinar concentraciones de varias sustancias en una mezcla tiene que ser, como mínimo, igual a la cantidad de sustancias a determinar. Las moléculas poliatómicas generalmente presentan una mayor sección eficaz de absorción en una determinada longitud de onda, siendo el infrarrojo medio la región donde muestran su *huella digital*. Entonces, la elección de las líneas láser se debe realizar cuidadosamente de manera de conseguir la mejor sensibilidad.

La técnica FA resonante permite medir amplitud y fase de la señal acústica por medio de detección sincrónica. La medición de fase brinda información muy

útil en este tipo de muestras, particularmente cuando están presentes el CO_2 y el Nitrógeno, debido a la interacción entre las dos moléculas a través de una resonancia de Fermi.² Este fenómeno produce un retraso en la señal con respecto a otras sustancias que muestran una rápida relajación V-T (vibración-traslación). Por lo tanto, es necesario realizar una adecuada medición de la amplitud y la fase en la detección FA de C_2H_4 en muestras provenientes de frutas o vegetales.

El desarrollo de un sistema capaz de medir trazas de C_2H_4 en conjunto con otras sustancias es útil para controlar la atmósfera en galpones de almacenamiento de frutas durante la cadena de distribución donde la presencia de CO_2 es muy importante. Por este motivo, en el laboratorio se estudiaron las características que debe tener un dispositivo para medición FA conjunta de estos gases.

En este trabajo se realiza un estudio de la fase de la señal FA a partir de mezclas calibradas, el cual abarca desde la metodología para una determinación precisa hasta el análisis de su influencia en la medición de trazas.

II. MODELO DE LA SEÑAL ACÚSTICA

Para baja absorbancia, el sistema FA es lineal³ y, suponiendo que todas las señales provenientes de las diferentes sustancias de la muestra tienen la misma fase, se puede plantear la siguiente expresión para la amplitud de la señal FA en una línea láser $\lambda_{i,1} \le i \le m$, con $m \ge n$:

$$S_i = K_d P_{0i} \sum_{j=1}^n \sigma_{ij} C_j$$
⁽¹⁾

donde K_d es la constante del dispositivo, σ_{ij} son las secciones eficaces de absorción de la sustancia *j* para la línea láser *i*, C_j la concentración de la sustancia *j* y P_{0i} la potencia del láser en la línea λ_i . En presencia de CO₂ la expresión (1) no es válida ya que la señal acústica producida por el mismo no se encuentra en fase con la excitación. Para describir el fenómeno se utilizó un modelo que describe, mediante ecuaciones de tasa poblacional, la producción de calor y, por consiguiente, la generación de ondas acústicas ⁴. En la figura 1 se muestra el esquema de niveles de energía vibracionales y los intercambios de energía en los cuales se basa el modelo, para C₂H₄ en una atmósfera libre de humedad.

Figura 1: Esquema de excitación-desexcitación de C_2H_4 en aire en presencia de CO_2 . $\lambda_1=9,6\mu m; \lambda_2=10,6\mu m$

Las flechas onduladas representan la excitación óptica, las flechas simples la desexcitación por colisiones y la flecha doble la transferencia de energía por resonancia de Fermi, la cual se produce también entre los niveles de 1388 y 1334 cm⁻¹ del CO_2 .

La rápida transferencia de energía entre los niveles vibracionales v_3 del CO₂ y v_1 del N₂ produce el defasaje de la señal acústica debida al CO₂. En efecto, el N₂ excitado en el nivel v_1 pierde su energía vibracional lentamente por colisiones con otras moléculas (CO₂, O₂, C₂H₄, etc.), transfiriéndola a energía traslacional. El tiempo de relajación en el que se produce este fenómeno (τ_{eff}) es del orden del milisegundo⁵.

La ecuación para la fase que se obtuvo a partir del modelo arriba citado, aplicado a CO_2 y C_2H_4 en ausencia de agua, en el caso de excitación modulada a frecuencias de audio, donde vale $\omega_0 \tau_{eff}$ >>1, es la siguiente:

$$\theta = \operatorname{arctg}\left(\frac{1/\omega_{_{0}}\tau_{eff}}{(1 + \sigma_{_{e}}C_{_{e}}/\sigma_{CO_{2}}C_{CO_{2}})v_{_{las}}/v_{_{N_{2}}} - 1}\right) \quad (2)$$

donde ω_0 es la pulsación de resonancia, v_{las} el número de onda de la línea láser utilizada, v_{N2} es la energía del estado vibracional v_1 del N₂ en cm⁻¹, σ_e y σ_{CO2} las secciones eficaces de absorción y C_e y C_{CO2} las concentraciones del C₂H₄ y CO₂ respectivamente. Con la ecuación (2), en ausencia de C₂H₄, se calculó una fase de 168° para una concentración de alrededor de 2% de CO₂.

Finalmente en la ref. 4 se propone una expresión para la amplitud de la señal FA en fase con el láser (S_i $cos(\theta_i)$), para la línea láser *i*, en muestras multicomponentes de *n*-1 sustancias, cuya relajación *V*-*T* es rápida y CO₂, en presencia de N₂, como:

$$S_{i} \cos(\theta_{i}) = K_{d} P_{0i} \left[\sum_{j=1}^{n-1} C_{j} \sigma_{ij} - \left(\frac{v_{N_{2}}}{v_{las}} - 1 \right) \cdot C_{CO_{2}} \sigma_{CO_{2}} \right]$$
(3)

en la cual aparece restando un término que depende del CO₂.

Registrando mediciones de señales FA para distintas líneas láser debidamente elegidas, se puede calcular la concentración de cada sustancia a partir del sistema (3).

III. EXPERIMENTO Y RESULTADOS

El sistema implementado se basó en un láser continuo de CO₂, hecho en el laboratorio, sintonizable en las bandas 9 y 10 µm, con potencia de hasta 5 W en la línea 10P(20). El haz modulado por un obturador mecánico de frecuencia variable (Thor Labs MC1000) atraviesa una celda longitudinal metálica especialmente diseñada y fabricada en CITEFA⁶. Posee filtros de cuarto de onda en los extremos, un resonador de 70 mm de largo y 12 mm de diámetro, y un micrófono electrete (Knowles, EK 3132) en el centro. La señal del micrófono fue procesada por un amplificador lock-in (SR830 de Stanford Research Systems) y transferida a una PC. Para obtener mayor precisión en las medidas de amplitud y fase, cada determinación consistió en realizar mediciones a intervalos de 5 Hz alrededor de la frecuencia de resonancia correspondiente al segundo modo longitudinal (2,2 kHz). Esto permitió evitar errores debido a posibles corrimientos de la resonancia por temperatura o composición de la mezcla.

La dificultad en la determinación de fase de este sistema era debido a pequeñas inestabilidades mecánicas del láser. Como la referencia era el optoacoplador del modulador mecánico, siendo éste estabilizado por un cristal, pequeñas desviaciones del haz láser respecto de la abertura de ~5 mm de la hoja rotante producían variaciones considerables en la fase medida. Para obtener una medición de fase confiable fue introducida una celda de referencia (CR) de idénticas características que la celda nombrada arriba. La misma contenía una alta concentración de C_2H_4 en N_2 , cuya señal FA se encuentra en fase con la excitación ($\tau_{V-T} < 1$ µs en aire a presión atmosférica'). El método implementado requirió para cada medición de dos barridos, uno con la celda de medición (CM) y otro con la CR. Los puntos muestreados que describen la respuesta de fase se aproximan por la función teórica que describe el defasaje que se produce alrededor de una resonancia, para obtener en forma precisa la fase con respecto al modulador. Las fases de la CM y la CR en la resonancia ($\theta_{\partial M}$ y $\theta_{\partial R}$) fueron obtenidas mediante el ajuste de los datos experimentales a la conocida dependencia funcional⁸:

$$\theta = \theta_0 - \arctan \frac{f^2 - f_0^2}{f \cdot \Delta f}, \qquad \Delta f = \frac{f_0}{Q}$$
(4)

donde θ_{θ} es la fase de resonancia ($\theta_{\partial M} - \theta_{\partial R} = \Delta \theta_{\theta}$ es lo que utilizamos en el modelo), f_{θ} es la frecuencia de resonancia y Q es el factor de mérito de la celda. La fase neta de la señal acústica respecto del láser es la diferencia entre las fases a la frecuencia de resonancia de la CM y la CR, ambas referidas al modulador. En la figura 2 se muestra el sistema de medición implementado.

Se realizó la medición de fase de alrededor de 2% de CO_2 en aire en varias líneas, obteniéndose una fase promedio de 165°, que concuerda con el valor teórico calculado en la sección anterior.

Figura 2: Esquema experimental.

En la figura 3 se observan las curvas de fase de las señales FA de la CM (con CO₂ en aire) y la CR (con alta concentración de C_2H_4).

Figura 3: Curvas de fase de la señal FA. Ambas fases son referidas al modulador mecánico. f_0 : frecuencia de resonancia.

El método de determinación de fase descrito arriba también fue utilizado para el análisis de muestras con C_2H_4 , CO_2 y N_2 .

La sección eficaz de absorción IR del C₂H₄ ha sido medida con láser de CO₂ por varios autores⁹. Por lo tanto es muy conveniente para calibrar nuestro sistema FA y determinar la constante K_d . Con ese resultado es posible determinar secciones eficaces de absorción de otras sustancias de interés biológico, como el CO₂ o el etanol.

Se sintonizó el láser en la línea 10P(14), donde el C₂H₄ tiene su máximo de absorción, siendo el valor de la sección eficaz 1,28x10⁻¹⁸ cm². Se irradiaron distintas mezclas de C₂H₄ en aire cromatográfico (L'Air Liquide, H₂O<5 ppm/V, CO+CO₂ <0.5 ppm/V) y para cada una de ellas se registró el pico de resonancia. La figura 4 muestra la amplitud del pico, normalizada a la potencia del láser, en función de la concentración de C₂H₄, lo cual representa la calibración de nuestro sistema. La pendiente de la recta ($K_d \sigma_{eti}$) obtenida en la línea 10P(14) resultó 426 μ V/W.ppm. Conociendo la sección eficaz del C₂H₄ en la línea 10P(14) se obtuvo K_d .

Figura 4: Calibración de C_2H_4 en aire a presión atmosférica.

En mezclas controladas de C_2H_4 , CO_2 y aire, preparadas en el laboratorio a partir de gases puros en una línea de alto vacío, se midieron amplitud y fase de la señal FA para las líneas 10P(14) (sección eficaz de absorción (σ_e) máxima para el C₂H₄) y 10P(16) (σ_e 7 veces menor), siendo σ_{CO2} parecido en ambas líneas. Se aplicó el sistema de ecuaciones (3) y se obtuvieron los resultados de la Tabla I, donde *C* nominal es la concentración de los componentes de las mezclas.

En la tabla se hace una comparación entre los resultados obtenidos con el modelo y los que se

obtendrían si se considerara que el CO_2 está en fase con la excitación (resolviendo el sistema de ecuaciones (1)).

En la cuarta columna se puede observar que la fase de la señal total presenta un cambio apreciable (123°) cuando comienza a pesar la concentración de C_2H_4 , lo que se presuponía en base al modelo. En la última columna se puede observar que, si no se tiene en cuenta el modelo, los resultados de las concentraciones de C_2H_4 son negativos, lo cual carece de significado físico. Esto demuestra que la fase debe ser tomada en cuenta.

TABLA I: Resultados de mediciones de amplitud y fase en muestras de CO_2 en aire y $C_2H_4+CO_2+aire$ para
distintas líneas láser.

C nominal		10P14		10P16		C obtenida con el modelo		C obtenida sin tener en cuenta la fase	
CO ₂	C_2H_4	S/P	θ	S/P	θ	CO ₂	C_2H_4	CO ₂	C_2H_4
[%]	[ppm]	[µV/W]	[grados]	[µV/W]	[grados]	[%]	[ppm]	[%]	[ppm]
2,21	-	823	-170	-	-	1,68	-	2,49	-
2,18	-	933	-161	-	-	1,83	-	2,82	-
2,16	-	834	-165	-	-	1,67	-	2,52	-
1,95	1,28	228	-123	678	-161	1,39	1,28	2,21	-1,18
2	0,237	650	-165	705	-162	1,37	0,2	2,07	-0,086

IV. CONCLUSIONES

El sistema implementado para la medición de fase dio resultados que se condicen con el modelo teórico para CO_2 puro. Se pudo observar que la señal acústica debida al CO_2 está prácticamente en contrafase con la excitación.

Se calcularon concentraciones de C_2H_4 (sustancia de interés en el proceso de maduración de frutas) con buena precisión mediante el modelo.

Las concentraciones de CO_2 calculadas con el modelo dieron, en promedio, un 25 % más bajas que las nominales. Esto puede deberse a las aproximaciones del modelo y a la presencia de impurezas, ya que el CO_2 utilizado, a diferencia del C_2H_4 , era de pureza industrial.

La determinación de fase en un sistema fotoacústico como el utilizado en este trabajo es muy útil cuando interviene el CO_2 , ya que sin la misma los resultados obtenidos en muestras multicomponentes serían erróneos.

Los autores agradecen al Sr. C. Morales y al Sr. J. Luque por su colaboración técnica. Este trabajo fue financiado parcialmente por los subsidios PICT 07-14267 y PICT 25469 de la ANPCyT.

Referencias

- L. Sánchez, V. Slezak, A. Peuriot y G. Santiago, Anales AFA 17, 81-84 (2005).
- [2] W.J. Witteman, "The CO₂ Laser", Springer-Verlag, Berlin, 1987.
- [3] M.W. Sigrist, "Air monitoring by laser photoacoustic spectroscopy," in *Air monitoring by spectroscopic techniques*, M.W. Sigrist ed., Vol. 127 of Chemical Analysis (John Wiley & Sons, New York, 1994), pp. 163-238.
- [4] P. L. Meyer y M. W. Sigrist, Rev. Sci. Instrum. 61, 1779-1807 (1990).
- [5] R. Rooth, A. Verhage y L. Wouters, Appl. Opt. 29, 3643-3653 (1990).

- [6] A. Peuriot, G. Santiago y V. Slezak, Anales AFA 15, 90-93 (2003).
- [7] A. Petculescu, B. Hall, R. Fraenzle, S. Phillips y R. M. Lueptow, J. Acoust. Soc. Am. **120**, 1779-1782 (2006).
- [8] A. Miklós, P. Hess y Z. Bozóki, Rev. Sci. Instrum. 72, 1937-1955 (2001).
- [9] M. Muertz, B. Frech y W. Urban, Appl. Phys. B 68, 243-249 (1999).