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La inestabilidad de Kelvin-Helmholtz se presenta en muchos plasmas naturales y de laboratorio, en
configuraciones muchas veces complejas con cizalla magnética y diferencias de densidad y temperatura de ambos
lados de la discontinuidad de velocidad. La inclusion de los efectos de la compresibilidad Ileva a notables com-
plicaciones debido a que la relacion de dispersion lleva en general a un potinomio de grado 10 que depende de 6
parametros independientes. Por este motivo en fa interpretacion de los datos experimentales se suele usar el re-
sultado de la teoria incompresible ya que en esa aproximacion la condicion de estabilidad se expresa en forma
analitica, y ademés porque en base a los conocidos teoremas de Newcomb, se piensa que la compresibilidad
tiende a estabilizar los modos de Kelvin-Helmholtz. Sin embargo dichos teoremas no se pueden aplicar en esta
caso dado que al haber movimiento de masa es posible tener perturbaciones de energfa negativa, y por lo tanto se
puede generar una nueva inestabilidad si debido a la compresibilidad aparecen nuevos modos. En este trabajo
mostramos que efectivamente, el efecto de fa compresibilidad lleva a desestabilizar el plasma para bajas velocida-
des relativas en situaciones que son estables en el limite incompresible.

The Kelvin-Helmholtz instability occurs in many natural and laboratory plasmas, in complex configurations
with magnetic shear and density and temperature jumps across the velocity. The addition of compressibility ef-
fects leads to notable complexities since the dispersion relation yields a polynomial of tenth degree that depends
on 6 independent parameters. Then. the results of the incompressible theory are usually employed while inter-
preting experimental data since in this approximation the stability condition has an analytical form, and it is as-
sumed that compressibility tends to stabilize the Kelvin-Helmholtz modes, an assumption based on the New-
comb’s well-known theorems. Nevertheless these theorems cannot be applied in our case because perturbations
with negative energy are possible in configurations with mass flow, and in consequence new instabilities may de-
velop if new modes appear due to compressibility. In this paper we show that the effect of compressibility desta-

bilizes the plasma for low relative velocities in cases that were stable in the incompressible limit.

1. INTRODUCTION

The Kelvin-Helmholtz Instability (KHI) occurs in
many laboratory and astrophysical plasmas, usually in
complex configurations in which the properties of the
plasma change across a transition layer separating two
uniform regions in relative. In many circumstances, the
problem can be modeled using a plane slab geometry, in
which the unperturbed quantities (density p, pressure p,
magnetic field B and mass flow velocity #) depend only
on the y coordinate (perpendicular to the transition
layer). A differential equation for the linear MHD
perturbations of stratified plasmas' can be used as a
starting point to investigate these problems. If the
wavelength of the perturbation is large as compared to
the thickness of the transition layer, we can ignore the
structure inside the transition and consider the latter as a
surface (at y=0) separating two infinite, uniform plasma
regions. The problem can then be treated by means of
standard normal mode analysis. The equations of ideal
MHD and the parameters of the configuration do not
involve either a frequency or a length scale. Therefore
the (complex) phase velocity v of the perturbation
(v=w/k/) is a function of the parameters of the

* Autor a quién debe dirigirse la correspondencia,
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plasma, of the mass velocities of the uniform regions
and of the wavenumber k, = (£,,0.4.) of the perturba-

tion and an algebraic dispersion relation is obtained.
The incompressible MHD approximation (IMHD) is
often employed in space physics to interpret the ob-
served data and to examine the stability of the configu-
ration. The tacit assumption is that compressibility ef-
fects thus neglected should (if any) improve stability.
This assumption is based on well-known theorems’
according to which the introduction of compressibility
leads to a positive contribution to the energy of the
plasma and so tends to stabilize it. However, these re-
sults cannot be applied in our case, since owing to the
presence of mass flow the plasma can sustain perturba-
tions with a negative energy density that can lead to
instability™*. A negative energy density perturbation
may lead to instability if it couples to a positive energy
density perturbation, since then both can grow without
an external source of energy. In IMHD, the instability

.arises from perturbations of the interface that are

exponentially damped in both plasma regions. The
instability occurs when u; exceeds a critical value u,
such that their energy density (in the laboratory frame) is
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positive in one region and negative in the other. It grows
because energy is transferred across the interface from
the negative energy density region to the other, and
remains localized, as it cannot be transported across the
magnetic field. We call it primary KHL.

In the compressible MHD (CMHD) there are fast
and slow magnetosonic waves that propagate in the bulk
of the plasma and transport energy across the magnetic
field. Consequently, the effect of compressibility on the
MHD Kelvin-Helmholtz instability is complex, leading
to the stabilization of certain perturbations and to the
destabilization of others.

Consider first the primary KHI. Due to compressibil-
ity, if u, is sufficiently large the perturbation may be
able to propagate in both regions as fast magnetosonic
waves. When this happens, the observer sees a pair of
fast magnetosonic waves radiated away from the
interface. One of these waves has a negative, and the
other a positive energy density’®. In this way,
perturbations that are unstable according to IMHD are
stabilized by compressibility. However, in addition to
this large-u, stabilization, there is a destabilizing effect
of compressibility, namely that the critical value . for
the onset of the instability is lowered (u.< u;). Stable
perturbations according to IMHD become unstable
when compressibility is taken into account.

Due to the presence of slow magnetosonic waves
new kinds of perturbations of the interface are possible,
which have no counterpart in IMHD. Some of them are
stable evanescent oscillations, or may consist of slow
magnetosonic waves in both regions (radiation of a pair
of slow magnetosonic waves), but some are unstable.
These new instabilities (called secondary KHI) are
found in intervals of u; that correspond to stable pettur-
bations according to IMHD, and are totally, or partially,
below the critical u, value for the onset of the primary
KHI. The occurrence of the secondary KHI is an addi-
tional destabilizing effect of compressibility. The
growth rates of the secondary modes are usually small.
However these modes cannot be ignored, since in some
configurations of interest for magnetopause applications
they are the only unstable modes present.

Il. COMPRESSIBLE PERTURBATIONS

Our treatment’ includes arbitrary jumps in the ve-
locity, magnetic fields, density and temperature, without
restriction on the direction of the wave vector of the
perturbation. The configuration consists of two uniform
plasma regions in relative motion with constant velocity
u{ in region | (y>0), and u} in region 2 (y<0).
The flow velocities uj and uj and the magnetic fields
B, and B, are parallel to the plane y =0, the suffixes
i=12 denote quantities pertaining to region 1 and 2,
respectively. At the interface y =0 the pressure (p), the
density (p) and the magnetic field can have arbitrary dis-
continuities, subject to the equilibrium condition.

We shall assume ideal CMHD and consider linear
adiabatic perturbations of the unperturbed configuration.
Since the growth rate of the instability does not depend
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on ujand u), separately, but only on their difference
2u =u{ —u), it is convenient to use a reference frame
moving with u'=(u;+u5)/2, where u =u=ue,,
u, =~u. The wavenumber of the perturbation of the
interface is k, = (4,,0,4,) and w is its frequency in the
average velocity frame; the phase velocity is then
v=w/k,. The Doppler-shifted frequencies in the
plasma frames are then @, =w -k, in region 1 and
w, =w+uyk, in region 2, and the corresponding phase
velocities are v, =w,/k,, i. e. v, =v-u, and
v, =v+u, . We shall denote by y; the angles between
B, and k,, and by ¢, the angles between B; and u. The
angle between k, and u is «, so that u, =ucosa . The
Alfvén and sound velocity are respectively

A =B/ Janp, , S, =w; ! p; (r =5/3) m

and we shall use the following definitions
d, =JA? +S% ,a; = A cosy,, b, =a,S,/d, (2)

Pi-mj = \[%(dlz * d/4 _4d/2bi2) 3

o -pH! -mh)
b :\ﬁ d} ! -b}) @

*(with Re(I;) >0, or Im(I}) >0 if Re(I;) =0). In each

region, the general form of the perturbation is

g' :ei(k,i—(l)l)(cie—k,r‘v_\" +D,e/{,r,-_1') (5)

!

In Eq. (5), ¢ is the y-component of the displacement,
and C; and D; are constants. The penetration depth of the
perturbation in region i is proportional to 1/Re(T;).
When Re(I’;) =0, Eq. (4) corresponds to fast and slow
magnetosonic waves in a semi-infinite uniform moving
plasma; whose wave vector is (&, .k, Im(I;),k.). When
Re(I';) # 0, Eq (4) corresponds to evanescent perturba-
tions and of course in this case the amplitudes of the
exponentially growing perturbations (D; and C;) must
vanish since the plasma extends to * infinity.

The continuity of the displacement and of the normal
stress at the interface couple the perturbations of regions
1 and 2 and leads to a matrix equation:

C I T SYC
D] 2p(vi-a))LS TIDy

2 2 2 2

T = pl(v] 4 ) _ p2(v2 _aZ) , N
n L

A0 —a)) pvi-a3) ®
I L

The matrix equation may be used to investigate
problems involving localized modes as well as the re-
flection and transmission of magnetosonic waves. The
unstable modes and the stable surface osciilations have
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Re(I ;) # 0. In this case we must have C; =D, =0.
Therefore the corresponding dispersion relation is
T=0 C)

The propagating modes have Re(I ;) =0, and there
is no restriction on C,, D;. In this case, T=0 and $=0
determine the poles and zeros of the reflection coeffi-
cient. Since the sign of the y-component of the group
velocity of magnetosonic waves may be different from
the sign of Re(I',), one must examine the group
velocities in each region, to ascertain which of these
conditions yields the dispersion relation for radiation of
a pair of waves, or for total transmission of waves.

To investigate the roots of (9) it is useful to intro-
duce a polynomial P that is obtained by taking the nu-
merator of the product 7S, thus eliminating the square
roots. Clearly, the roots of P = 0 encompass the solu-
tions of 7 = 0 as well as those of S = 0, and we must
discard the latter when we look for Jocalized modes. We
call ‘true branch’ (T) the set of solutions of 7 = 0 and
‘spurious branch’ (S) the solutions of § = 0. The T-
branch and the S-branch consist of several continuous
manifolds in the parameter space of the problem. If the
parameters change, a root v (real or complex) of P that
belongs to a certain segment T, moves along it, until
eventually it arrives to the boundary and ceases to be-
long to the true branch and becomes spurious. Note that
the T-S boundaries occur only for real values of v, at the
points where I';,=0,20. A convenient way to visualize
the real roots of the dispersion relation and to unravel
the topology of the T and S branches is to use a
graphical method first employed by Chandrasekhar®. It
uses the fact that finding the roots v of P=0 is
equivalent to solving for y and v the coupled
equations:

P(v;,v;)=0, (10)

Their real solutions can be found in a (v,v,) dia-
gram as the intersections of the line L given by (10b)
with the curves v, =v,(v,) that are obtained solving
the bi-cubic (in v, and v,) equation (10a) for v,. It
suffices to consider only a quadrant, since the curves
vy =v,(v,) are symmetrical under reflections on both
axes. In this diagram the lines v, =v, and v, =-v,
represent the v- and u,- axes (except from a scale factor
V2). A real root belongs to the T branch if
Sign(v.Z —a12)¢Sign(v§—a§) (i. e, if |v,]<a; and
lvy [>ay, or |v;[>a and |v, < a,); if otherwise, it
belongs to the S-branch. Both branches must be consid-
ered for radiation and total transmission modes.

For certain u;, L is tangent to the curves and the
roots coalesce. This might correspond to marginal
stability. An analysis of the diagrams shows that there
can be up to six positive values of u; corresponding to
significant (i.e., belonging to the T-branch) double roots
of P(Wy=0 (uy,...4,,) and there can be up to three
unstable intervals: (a) u, <u, <u,; that we shall call
secondary interval A, (b)u,, <u, <u,, or secondary
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vy =V +2u,

interval B and (c) u,s <u;, <y or primary interval.
As the parameters are varied, it may happen that the pair
uy; and uys, or the pair u,, and u,s, coalesce and
become complex. In the first case, the secondary interval
A merges with the Primary interval. In the second case,
the secondary interval B is merged with the principal
interval. Notice that the secondary intervals can partially
or totally overlap. These intervals can be extremely nar-
row for some values of the parameters, and they vanish
for flute perturbations in either region 1 or 2. For nega-
tive u,, a completely symmetrical result is obtained, in
which the signs of the inequalities are reversed.

I11. THE SECONDARY KELVIN-HELMHOLTZ
INSTABILITY

In the incompressible limit (S}, S, - «) the secon-
dary unstable intervals disappear, and we are left only
with a main unstable interval that extends to infinity.
Then, the secondary KHI and the large u, stabilization
of the primary KHI at u4 are consequences of com-
pressibility. To see the origin of the secondary KHI, we
note that P(v,,v,) can be written as:

P, v,) = SES3P, +SER+ SR+ P (11)

P =07 =a )3 )P O =) = p3 (v ~a3)°] and
P,, P,, P, are polynomials whose coefficients are func-
tions of ay, as, 4y, 4>, o) and py. In the limit S,S, — o,
if we assume that v, remain finite, the equation (11)

reduces to P,. = 0. Solving it, one finds two roots that

nc
are stable, and correspond to Alfvén waves propagating
in regions 1 and 2. respectively: v=v,, =u; ta,,
V=v,,, =-u, £a,. The roots":

2 2 2
PL—P aip,+asp Au, pp
V=V, S 2+\[( (PLHarpr) A PP

PPy PLtp; (P +p2)’
yield the incompressible Kelvin-Helmholtz instability
for

1 +p
iukl>u.~=—\/f‘——3—(afpl+a§pz> (12)
2N pip2
Finally, the roots
2 2 2

_ _ . Pt (ay py—a3p,)  4uipp;
V=Vgs SU, + - >
P =P P P2 (P =p2)

are spurious. Some of these roots can coincide for cer-
tain . For example, when u, =u,, =(a, +a,)/2 the
roots Va., Vas, Vks, (* according to the sign of
alp ~da3py) and vs. coincide and their value is
v=v, =(-a, +a,)/2. This degeneracy corresponds to
v, = —a; and v, = —a,. It can be verified that u, 2 u,,.
Now, let us assume that S,,S, are large, but finite. Then
the terms SZP (v,,v,)+S87P,(v,,v,) in (11) can be
treated as a small perturbation that couples the degener-
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ate roots v,., v,2., ki, and vg.. It can be shown that part
of the degeneracy is removed, and some roots acquire an
imaginary part. The unstable modes that appear in this
way (Secondary KHI) have no analogue among the
purely incompressible modes. This instability appears
around #, ~u,, that is, in a range of #, that is stable
according to IMHD, since it lies below u,. There are
three other points where degeneracy of the roots occurs.
The removal of the degeneracy due to compressibility at
u=-u;,v=-v, leads to overstable modes like in the
case described above, but not at other points.

IV. STABILITY DIAGRAMS

The problem of finding the localized eigenmodes re-
quires solving the ten-degree polynomial P. In addition,
the problem involves seven independent parameters.
Five of them characterize the plasma configuration; they
can be taken as r,=B,/B,, r,=S,/S, and
ry = p> ! py, the relative velocity », and the angles ¢,
from B, to u and 6 from B, to B, (magnetic shear
angle). The remaining is the angle y, from B, to &,
which identifies the perturbation we are considering.
Note that P (and its roots) depends on u only through
the combination

u, =ucosa =ucos(y, —¢,) (13)

We shall represent the results using diagrams in which
we plot the growth rate Im(v) of the unstable modes as
functions of y, and wu,, keeping fixed the remaining
parameters. An example is shown in Fig. I, where we
have drawn a contour plot of Im(v) for parameters from
spacecraft data taken on January 11, 1997 in a region
near a flank of the mangetopause (r,=1.5, r=2.67,
ri~0.117, 8= -80°). Notice that this plot does not refer
to a particular plasma configuration (since we have not
yet specified ¥ and ¢)). it can be used for any
configuration with the same r,, r,, #y and 6. If at the
same point (g, ;) there are two unstable roots, we only
represent the larger of the two values of Im(v).

In Fig. 1, we have also drawn the curve u,(y,)
given by eq. (12). All the points of the stability diagram
above wu,(w,) corrtespond to instability according to
IMHD. Several effects of compressibility are easily
recognized: (a) a large-u, stabilization of the Primary
instability, (b) a small-u, destabilization of the Primary
instability and (d) a presence of the Secondary
instability for values of u, that are stable according to
IMHD. It should also be mentioned that for u, > u;(y,)
(but not very close to it) the growth rates calculated with
CMHD are always smaller than those calculated with
IMHD.

To investigate a particular configuration by means of
the stability diagram we must draw the curve C given by
eq. (13). Following C we find the value of Im(v) for the
configuration, for any perturbation characterized by the
angle v, . Since the problem is invariant under the trans-
formation (v - —v, 1, — —u, ), it suffices to calculate
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the contour plot for #, >0 and then draw the curve C’
given by u, =-wucosa in addition to C. In our example
the configuration described by the curves C and C’
(u=1.74;, ¢, =-89.9%) is stable according to IMHD,
but it is unstable if compressibility is taken into account.
The unstable modes occur in the range 40° <y, <50°
and they belong to the secondary KHI. Their maximum
growth rate is small (Im(v)~0.044, ), but significant.
Other configurations with the same values of #,, 7., ¥,
and 8 can be more unstable. The extreme of Im(v) is
~2.1154,; it occurs for y, ~25° and u, ~54;.

!lt/'A !

02 0.4 0.6 08 |

Fig. 1. Stability diagram. The contours of Im(v) are
spaced by 0.24,.

In order to clarify the meaning of the large-u
stabilization, let us consider a configuration with
u=104; and ¢, =-90°. The new curves C, and C;’
will be similar to C and C’. Part of C, (for
45° <y, <113°) will lie in the upper part of the
stability diagram (u;, >u,,) corresponding to stable
perturbations: these are the large-z; stabilized modes.
However, this configuration is unstable, since C, and C,’
must necessarily pass through the unstable part of the
diagram. Actually, the most unstable modes have Im(v)
very close to the extreme value for the diagram.
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